Introduction to Functional Differential Equations View Full Text


Ontology type: schema:Book     


Book Info

DATE

1993

GENRE

Monograph

AUTHORS

Jack K. Hale , Sjoerd M. Verduyn Lunel

PUBLISHER

Springer Nature

ABSTRACT

The present book builds upon an earlier work of J. Hale, "Theory of Func­ tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin­ ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at­ tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re­ search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . . More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-4342-7

DOI

http://dx.doi.org/10.1007/978-1-4612-4342-7

ISBN

978-1-4612-8741-4 | 978-1-4612-4342-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050475850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology, School of Mathematics, 30332, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Georgia Institute of Technology, School of Mathematics, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hale", 
        "givenName": "Jack K.", 
        "id": "sg:person.010364031753.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364031753.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.12380.38", 
          "name": [
            "Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lunel", 
        "givenName": "Sjoerd M. Verduyn", 
        "id": "sg:person.013421042744.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013421042744.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "The present book builds upon an earlier work of J. Hale, \"Theory of Func\u00ad tional Differential Equations\" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin\u00ad ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at\u00ad tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re\u00ad search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( \u00a2,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .", 
    "genre": "monograph", 
    "id": "sg:pub.10.1007/978-1-4612-4342-7", 
    "isAccessibleForFree": false, 
    "isbn": [
      "978-1-4612-8741-4", 
      "978-1-4612-4342-7"
    ], 
    "keywords": [
      "functional differential equations", 
      "differential-difference equations", 
      "differential equations", 
      "difference equations", 
      "neutral functional differential equations", 
      "neutral differential difference equations", 
      "continuation of solutions", 
      "invariant manifold theory", 
      "neutral equations", 
      "retarded equations", 
      "constants formula", 
      "manifold theory", 
      "dissipative systems", 
      "continuous dependence", 
      "equilibrium point", 
      "exponential estimates", 
      "fundamental solution", 
      "characteristic equation", 
      "periodic orbits", 
      "equations", 
      "complete theory", 
      "J. Hale", 
      "basic theory", 
      "theory", 
      "supplementary remarks", 
      "present book", 
      "earlier work", 
      "active topic", 
      "solution", 
      "uniqueness", 
      "new presentation", 
      "orbit", 
      "remarks", 
      "formula", 
      "existence", 
      "system", 
      "estimates", 
      "dependence", 
      "point", 
      "Hale", 
      "continuation", 
      "Chapter 12", 
      "recent literature", 
      "definition", 
      "introduction", 
      "work", 
      "search", 
      "variation", 
      "topic", 
      "reference", 
      "book", 
      "sections", 
      "spirit", 
      "tractor", 
      "literature", 
      "materials", 
      "guide", 
      "changes", 
      "presentation", 
      "subjects", 
      "ear system", 
      "course", 
      "major changes", 
      "one-third"
    ], 
    "name": "Introduction to Functional Differential Equations", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050475850"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-4342-7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-4342-7", 
      "https://app.dimensions.ai/details/publication/pub.1050475850"
    ], 
    "sdDataset": "books", 
    "sdDatePublished": "2022-09-02T16:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/book/book_15.jsonl", 
    "type": "Book", 
    "url": "https://doi.org/10.1007/978-1-4612-4342-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4342-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4342-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4342-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4342-7'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      20 PREDICATES      88 URIs      81 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-4342-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0db61ddf26464841879ff768d74a94bd
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description The present book builds upon an earlier work of J. Hale, "Theory of Func­ tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin­ ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at­ tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re­ search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .
7 schema:genre monograph
8 schema:isAccessibleForFree false
9 schema:isbn 978-1-4612-4342-7
10 978-1-4612-8741-4
11 schema:keywords Chapter 12
12 Hale
13 J. Hale
14 active topic
15 basic theory
16 book
17 changes
18 characteristic equation
19 complete theory
20 constants formula
21 continuation
22 continuation of solutions
23 continuous dependence
24 course
25 definition
26 dependence
27 difference equations
28 differential equations
29 differential-difference equations
30 dissipative systems
31 ear system
32 earlier work
33 equations
34 equilibrium point
35 estimates
36 existence
37 exponential estimates
38 formula
39 functional differential equations
40 fundamental solution
41 guide
42 introduction
43 invariant manifold theory
44 literature
45 major changes
46 manifold theory
47 materials
48 neutral differential difference equations
49 neutral equations
50 neutral functional differential equations
51 new presentation
52 one-third
53 orbit
54 periodic orbits
55 point
56 present book
57 presentation
58 recent literature
59 reference
60 remarks
61 retarded equations
62 search
63 sections
64 solution
65 spirit
66 subjects
67 supplementary remarks
68 system
69 theory
70 topic
71 tractor
72 uniqueness
73 variation
74 work
75 schema:name Introduction to Functional Differential Equations
76 schema:productId N000824235ff54e3eaa7bfbbd1cf87572
77 Nd1612824176e4acdb8047ee6f560a819
78 schema:publisher N8d9d6710f6f4477583c3c7a5fa61dde1
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050475850
80 https://doi.org/10.1007/978-1-4612-4342-7
81 schema:sdDatePublished 2022-09-02T16:09
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nb73e410c42be45d1977a848579cc1cdc
84 schema:url https://doi.org/10.1007/978-1-4612-4342-7
85 sgo:license sg:explorer/license/
86 sgo:sdDataset books
87 rdf:type schema:Book
88 N000824235ff54e3eaa7bfbbd1cf87572 schema:name doi
89 schema:value 10.1007/978-1-4612-4342-7
90 rdf:type schema:PropertyValue
91 N0db61ddf26464841879ff768d74a94bd rdf:first sg:person.010364031753.92
92 rdf:rest N10b92be1f8a54031b95092dbeeb78467
93 N10b92be1f8a54031b95092dbeeb78467 rdf:first sg:person.013421042744.62
94 rdf:rest rdf:nil
95 N8d9d6710f6f4477583c3c7a5fa61dde1 schema:name Springer Nature
96 rdf:type schema:Organisation
97 Nb73e410c42be45d1977a848579cc1cdc schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nd1612824176e4acdb8047ee6f560a819 schema:name dimensions_id
100 schema:value pub.1050475850
101 rdf:type schema:PropertyValue
102 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
103 schema:name Mathematical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
106 schema:name Pure Mathematics
107 rdf:type schema:DefinedTerm
108 sg:person.010364031753.92 schema:affiliation grid-institutes:grid.213917.f
109 schema:familyName Hale
110 schema:givenName Jack K.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364031753.92
112 rdf:type schema:Person
113 sg:person.013421042744.62 schema:affiliation grid-institutes:grid.12380.38
114 schema:familyName Lunel
115 schema:givenName Sjoerd M. Verduyn
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013421042744.62
117 rdf:type schema:Person
118 grid-institutes:grid.12380.38 schema:alternateName Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
119 schema:name Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
120 rdf:type schema:Organization
121 grid-institutes:grid.213917.f schema:alternateName Georgia Institute of Technology, School of Mathematics, 30332, Atlanta, GA, USA
122 schema:name Georgia Institute of Technology, School of Mathematics, 30332, Atlanta, GA, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...