Adaptive Finite Element Flux Corrected Transport Techniques for CFD View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

K. Morgan , J. Peraire , R. Löhner

ABSTRACT

In previous papers [1,2] we have described an explicit finite element solution procedure for the compressible Euler and Navier-Stokes equations. The approach was a finite element equivalent of a two-step Lax-Wendroff scheme and was implemented on unstructured triangular or tetrahedral grids. An important feature of the work was the use of adaptive mesh refinement methods for the solution of steady state problems in two dimensions, using error indicators based upon interpolation theory. More... »

PAGES

165-175

Book

TITLE

Finite Elements

ISBN

978-1-4612-8350-8
978-1-4612-3786-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-3786-0_8

DOI

http://dx.doi.org/10.1007/978-1-4612-3786-0_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031983364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Morgan", 
        "givenName": "K.", 
        "id": "sg:person.014565152133.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014565152133.18"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Peraire", 
        "givenName": "J.", 
        "id": "sg:person.07455633011.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07455633011.61"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "L\u00f6hner", 
        "givenName": "R.", 
        "id": "sg:person.014601673511.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601673511.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "In previous papers [1,2] we have described an explicit finite element solution procedure for the compressible Euler and Navier-Stokes equations. The approach was a finite element equivalent of a two-step Lax-Wendroff scheme and was implemented on unstructured triangular or tetrahedral grids. An important feature of the work was the use of adaptive mesh refinement methods for the solution of steady state problems in two dimensions, using error indicators based upon interpolation theory.", 
    "editor": [
      {
        "familyName": "Dwoyer", 
        "givenName": "D. L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hussaini", 
        "givenName": "M. Y.", 
        "type": "Person"
      }, 
      {
        "familyName": "Voigt", 
        "givenName": "R. G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-3786-0_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-8350-8", 
        "978-1-4612-3786-0"
      ], 
      "name": "Finite Elements", 
      "type": "Book"
    }, 
    "keywords": [
      "finite element solution procedure", 
      "adaptive mesh refinement method", 
      "finite element equivalent", 
      "Navier-Stokes equations", 
      "two-step Lax", 
      "mesh refinement method", 
      "steady-state problem", 
      "element equivalent", 
      "tetrahedral grids", 
      "Wendroff scheme", 
      "error indicator", 
      "compressible Euler", 
      "solution procedure", 
      "interpolation theory", 
      "state problem", 
      "transport technique", 
      "refinement method", 
      "CFD", 
      "grid", 
      "previous paper", 
      "Euler", 
      "important features", 
      "equations", 
      "Lax", 
      "solution", 
      "scheme", 
      "theory", 
      "technique", 
      "method", 
      "work", 
      "problem", 
      "dimensions", 
      "approach", 
      "procedure", 
      "use", 
      "features", 
      "equivalent", 
      "indicators", 
      "paper"
    ], 
    "name": "Adaptive Finite Element Flux Corrected Transport Techniques for CFD", 
    "pagination": "165-175", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031983364"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-3786-0_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-3786-0_8", 
      "https://app.dimensions.ai/details/publication/pub.1031983364"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_314.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4612-3786-0_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-3786-0_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-3786-0_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-3786-0_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-3786-0_8'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-3786-0_8 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N2f4bf5e6e30c4f3a9877e640133e8bf1
4 schema:datePublished 1988
5 schema:datePublishedReg 1988-01-01
6 schema:description In previous papers [1,2] we have described an explicit finite element solution procedure for the compressible Euler and Navier-Stokes equations. The approach was a finite element equivalent of a two-step Lax-Wendroff scheme and was implemented on unstructured triangular or tetrahedral grids. An important feature of the work was the use of adaptive mesh refinement methods for the solution of steady state problems in two dimensions, using error indicators based upon interpolation theory.
7 schema:editor N5aa4b77be98f415495aa084e90414dbf
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N438cf08b54a14a4db8ff42280b6e0c3b
12 schema:keywords CFD
13 Euler
14 Lax
15 Navier-Stokes equations
16 Wendroff scheme
17 adaptive mesh refinement method
18 approach
19 compressible Euler
20 dimensions
21 element equivalent
22 equations
23 equivalent
24 error indicator
25 features
26 finite element equivalent
27 finite element solution procedure
28 grid
29 important features
30 indicators
31 interpolation theory
32 mesh refinement method
33 method
34 paper
35 previous paper
36 problem
37 procedure
38 refinement method
39 scheme
40 solution
41 solution procedure
42 state problem
43 steady-state problem
44 technique
45 tetrahedral grids
46 theory
47 transport technique
48 two-step Lax
49 use
50 work
51 schema:name Adaptive Finite Element Flux Corrected Transport Techniques for CFD
52 schema:pagination 165-175
53 schema:productId N377132b4cf134b5b987a0fe9b81cca4b
54 Ndb32cc43ee7940c79eeef1d086667a54
55 schema:publisher N0e6f6ec649e44a329c672dbf1611d3b7
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031983364
57 https://doi.org/10.1007/978-1-4612-3786-0_8
58 schema:sdDatePublished 2022-05-20T07:45
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N55f0666174e6467aa75cb23c9cf5c414
61 schema:url https://doi.org/10.1007/978-1-4612-3786-0_8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N0e1724c866f6489daa6f6527d2d326fe rdf:first sg:person.014601673511.00
66 rdf:rest rdf:nil
67 N0e6f6ec649e44a329c672dbf1611d3b7 schema:name Springer Nature
68 rdf:type schema:Organisation
69 N173532685b6d4c2f92dc199e8a84ad00 rdf:first Nc7c43a7213674d5899cb067f4640bfc5
70 rdf:rest rdf:nil
71 N2f4bf5e6e30c4f3a9877e640133e8bf1 rdf:first sg:person.014565152133.18
72 rdf:rest N9320644b916d4fea9a95afb68938228b
73 N377132b4cf134b5b987a0fe9b81cca4b schema:name dimensions_id
74 schema:value pub.1031983364
75 rdf:type schema:PropertyValue
76 N438cf08b54a14a4db8ff42280b6e0c3b schema:isbn 978-1-4612-3786-0
77 978-1-4612-8350-8
78 schema:name Finite Elements
79 rdf:type schema:Book
80 N4526559fd6bf48089638e509b7c373d8 schema:familyName Hussaini
81 schema:givenName M. Y.
82 rdf:type schema:Person
83 N55f0666174e6467aa75cb23c9cf5c414 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N5aa4b77be98f415495aa084e90414dbf rdf:first N6c10df30dbb348bda7255f1b4839341e
86 rdf:rest Na4f3969dc23e4c399b1c572245542eb4
87 N6c10df30dbb348bda7255f1b4839341e schema:familyName Dwoyer
88 schema:givenName D. L.
89 rdf:type schema:Person
90 N9320644b916d4fea9a95afb68938228b rdf:first sg:person.07455633011.61
91 rdf:rest N0e1724c866f6489daa6f6527d2d326fe
92 Na4f3969dc23e4c399b1c572245542eb4 rdf:first N4526559fd6bf48089638e509b7c373d8
93 rdf:rest N173532685b6d4c2f92dc199e8a84ad00
94 Nc7c43a7213674d5899cb067f4640bfc5 schema:familyName Voigt
95 schema:givenName R. G.
96 rdf:type schema:Person
97 Ndb32cc43ee7940c79eeef1d086667a54 schema:name doi
98 schema:value 10.1007/978-1-4612-3786-0_8
99 rdf:type schema:PropertyValue
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
104 schema:name Numerical and Computational Mathematics
105 rdf:type schema:DefinedTerm
106 sg:person.014565152133.18 schema:familyName Morgan
107 schema:givenName K.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014565152133.18
109 rdf:type schema:Person
110 sg:person.014601673511.00 schema:familyName Löhner
111 schema:givenName R.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601673511.00
113 rdf:type schema:Person
114 sg:person.07455633011.61 schema:familyName Peraire
115 schema:givenName J.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07455633011.61
117 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...