Robust Regression with a Categorical Covariable View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

Mia Huber , Peter J. Rousseeuw

ABSTRACT

A fast algorithm is presented for robust estimation of a linear model with a distributed intercept. This is a regression model in which the data set contains groups with the same slopes but different intercepts, a situation which often occurs in economics. In each group, the algorithm first looks for outliers in (x,y) -space by means of a robust projection method. Then a modified version of the resampling technique is applied to the whole data set, in order to find an approximation to least median of squares or other regression methods with a positive breakdown point. Because of the preliminary projections, the number of subsets may be drastically reduced. Simulations and examples show that the overall computation time is substantially lower than that of the straightforward algorithm. The method is illustrated with a real data set. More... »

PAGES

215-224

Book

TITLE

Robust Statistics, Data Analysis, and Computer Intensive Methods

ISBN

978-0-387-94660-3
978-1-4612-2380-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14

DOI

http://dx.doi.org/10.1007/978-1-4612-2380-1_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045596237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "University of Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Mia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "University of Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter J.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-9473(92)90085-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011332870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9473(92)00063-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016832169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610917708812052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027015171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107763504", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471725382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107763504"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "A fast algorithm is presented for robust estimation of a linear model with a distributed intercept. This is a regression model in which the data set contains groups with the same slopes but different intercepts, a situation which often occurs in economics. In each group, the algorithm first looks for outliers in (x,y) -space by means of a robust projection method. Then a modified version of the resampling technique is applied to the whole data set, in order to find an approximation to least median of squares or other regression methods with a positive breakdown point. Because of the preliminary projections, the number of subsets may be drastically reduced. Simulations and examples show that the overall computation time is substantially lower than that of the straightforward algorithm. The method is illustrated with a real data set.", 
    "editor": [
      {
        "familyName": "Rieder", 
        "givenName": "Helmut", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-2380-1_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-94660-3", 
        "978-1-4612-2380-1"
      ], 
      "name": "Robust Statistics, Data Analysis, and Computer Intensive Methods", 
      "type": "Book"
    }, 
    "name": "Robust Regression with a Categorical Covariable", 
    "pagination": "215-224", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045596237"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-2380-1_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d931f1afb4fa40380a542c0198bdcb271bce751cd0ee586370aedff8da6e4f25"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-2380-1_14", 
      "https://app.dimensions.ai/details/publication/pub.1045596237"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106810_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-2380-1_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-2380-1_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nacdaa36775064d498f89de3463978cff
4 schema:citation https://app.dimensions.ai/details/publication/pub.1107763504
5 https://doi.org/10.1002/0471725382
6 https://doi.org/10.1016/0167-9473(92)00063-w
7 https://doi.org/10.1016/0167-9473(92)90085-t
8 https://doi.org/10.1080/03610917708812052
9 https://doi.org/10.1214/aos/1176348890
10 schema:datePublished 1996
11 schema:datePublishedReg 1996-01-01
12 schema:description A fast algorithm is presented for robust estimation of a linear model with a distributed intercept. This is a regression model in which the data set contains groups with the same slopes but different intercepts, a situation which often occurs in economics. In each group, the algorithm first looks for outliers in (x,y) -space by means of a robust projection method. Then a modified version of the resampling technique is applied to the whole data set, in order to find an approximation to least median of squares or other regression methods with a positive breakdown point. Because of the preliminary projections, the number of subsets may be drastically reduced. Simulations and examples show that the overall computation time is substantially lower than that of the straightforward algorithm. The method is illustrated with a real data set.
13 schema:editor N56075c493aa3408d8acc8cc75f6cff28
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nd1d7a0cdc38e4c5aac1d38f12f6edb77
18 schema:name Robust Regression with a Categorical Covariable
19 schema:pagination 215-224
20 schema:productId N3b07352982794833a768b342a2f5c141
21 Nbcbdde7fcd6749cab6c59c21cfb5dfef
22 Ne80ba40a18b04da2958f7b2ce564f3bb
23 schema:publisher Na6542456c60743ba967915d754236724
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045596237
25 https://doi.org/10.1007/978-1-4612-2380-1_14
26 schema:sdDatePublished 2019-04-16T10:07
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N1f930bde20ec48feb14c8c4d103d8ec8
29 schema:url https://link.springer.com/10.1007%2F978-1-4612-2380-1_14
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N1f930bde20ec48feb14c8c4d103d8ec8 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N27f672e3eb444311a072f2231351cc66 rdf:first sg:person.0775337371.63
36 rdf:rest rdf:nil
37 N3b07352982794833a768b342a2f5c141 schema:name readcube_id
38 schema:value d931f1afb4fa40380a542c0198bdcb271bce751cd0ee586370aedff8da6e4f25
39 rdf:type schema:PropertyValue
40 N56075c493aa3408d8acc8cc75f6cff28 rdf:first Na43ab31921e64cf592ea04f9bc40a552
41 rdf:rest rdf:nil
42 Na43ab31921e64cf592ea04f9bc40a552 schema:familyName Rieder
43 schema:givenName Helmut
44 rdf:type schema:Person
45 Na6542456c60743ba967915d754236724 schema:location New York, NY
46 schema:name Springer New York
47 rdf:type schema:Organisation
48 Nacdaa36775064d498f89de3463978cff rdf:first Neafd79e60c90421ab49dca51a10843e1
49 rdf:rest N27f672e3eb444311a072f2231351cc66
50 Nbcbdde7fcd6749cab6c59c21cfb5dfef schema:name doi
51 schema:value 10.1007/978-1-4612-2380-1_14
52 rdf:type schema:PropertyValue
53 Nd1d7a0cdc38e4c5aac1d38f12f6edb77 schema:isbn 978-0-387-94660-3
54 978-1-4612-2380-1
55 schema:name Robust Statistics, Data Analysis, and Computer Intensive Methods
56 rdf:type schema:Book
57 Ne80ba40a18b04da2958f7b2ce564f3bb schema:name dimensions_id
58 schema:value pub.1045596237
59 rdf:type schema:PropertyValue
60 Neafd79e60c90421ab49dca51a10843e1 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
61 schema:familyName Huber
62 schema:givenName Mia
63 rdf:type schema:Person
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
71 schema:familyName Rousseeuw
72 schema:givenName Peter J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
74 rdf:type schema:Person
75 https://app.dimensions.ai/details/publication/pub.1107763504 schema:CreativeWork
76 https://doi.org/10.1002/0471725382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107763504
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0167-9473(92)00063-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1016832169
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0167-9473(92)90085-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1011332870
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/03610917708812052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027015171
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1214/aos/1176348890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408724
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
87 schema:name University of Antwerp, Belgium
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...