Robust Regression with a Categorical Covariable View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

Mia Huber , Peter J. Rousseeuw

ABSTRACT

A fast algorithm is presented for robust estimation of a linear model with a distributed intercept. This is a regression model in which the data set contains groups with the same slopes but different intercepts, a situation which often occurs in economics. In each group, the algorithm first looks for outliers in (x,y) -space by means of a robust projection method. Then a modified version of the resampling technique is applied to the whole data set, in order to find an approximation to least median of squares or other regression methods with a positive breakdown point. Because of the preliminary projections, the number of subsets may be drastically reduced. Simulations and examples show that the overall computation time is substantially lower than that of the straightforward algorithm. The method is illustrated with a real data set. More... »

PAGES

215-224

Book

TITLE

Robust Statistics, Data Analysis, and Computer Intensive Methods

ISBN

978-0-387-94660-3
978-1-4612-2380-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14

DOI

http://dx.doi.org/10.1007/978-1-4612-2380-1_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045596237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "University of Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Mia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "University of Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter J.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-9473(92)90085-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011332870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9473(92)00063-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016832169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610917708812052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027015171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107763504", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471725382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107763504"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "A fast algorithm is presented for robust estimation of a linear model with a distributed intercept. This is a regression model in which the data set contains groups with the same slopes but different intercepts, a situation which often occurs in economics. In each group, the algorithm first looks for outliers in (x,y) -space by means of a robust projection method. Then a modified version of the resampling technique is applied to the whole data set, in order to find an approximation to least median of squares or other regression methods with a positive breakdown point. Because of the preliminary projections, the number of subsets may be drastically reduced. Simulations and examples show that the overall computation time is substantially lower than that of the straightforward algorithm. The method is illustrated with a real data set.", 
    "editor": [
      {
        "familyName": "Rieder", 
        "givenName": "Helmut", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-2380-1_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-94660-3", 
        "978-1-4612-2380-1"
      ], 
      "name": "Robust Statistics, Data Analysis, and Computer Intensive Methods", 
      "type": "Book"
    }, 
    "name": "Robust Regression with a Categorical Covariable", 
    "pagination": "215-224", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045596237"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-2380-1_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d931f1afb4fa40380a542c0198bdcb271bce751cd0ee586370aedff8da6e4f25"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-2380-1_14", 
      "https://app.dimensions.ai/details/publication/pub.1045596237"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106810_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-2380-1_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-2380-1_14'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-2380-1_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5302730ad93c4725a66bc0268b9d833b
4 schema:citation https://app.dimensions.ai/details/publication/pub.1107763504
5 https://doi.org/10.1002/0471725382
6 https://doi.org/10.1016/0167-9473(92)00063-w
7 https://doi.org/10.1016/0167-9473(92)90085-t
8 https://doi.org/10.1080/03610917708812052
9 https://doi.org/10.1214/aos/1176348890
10 schema:datePublished 1996
11 schema:datePublishedReg 1996-01-01
12 schema:description A fast algorithm is presented for robust estimation of a linear model with a distributed intercept. This is a regression model in which the data set contains groups with the same slopes but different intercepts, a situation which often occurs in economics. In each group, the algorithm first looks for outliers in (x,y) -space by means of a robust projection method. Then a modified version of the resampling technique is applied to the whole data set, in order to find an approximation to least median of squares or other regression methods with a positive breakdown point. Because of the preliminary projections, the number of subsets may be drastically reduced. Simulations and examples show that the overall computation time is substantially lower than that of the straightforward algorithm. The method is illustrated with a real data set.
13 schema:editor Nf00a6346690c4d3ea4be24718d5f2d98
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nb9f127970b154e46b617e6d7df9807c4
18 schema:name Robust Regression with a Categorical Covariable
19 schema:pagination 215-224
20 schema:productId N426eecc032b84ccfbb35c524393c531d
21 N8350edb9836145cb8cd38e5c63060bd0
22 Nad3e9410fc3d40268ded804d2483691c
23 schema:publisher N225f151ed8044c5082b33a1d3016c0b3
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045596237
25 https://doi.org/10.1007/978-1-4612-2380-1_14
26 schema:sdDatePublished 2019-04-16T10:07
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N5bb1d71cff434d17863e507642253acc
29 schema:url https://link.springer.com/10.1007%2F978-1-4612-2380-1_14
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N225f151ed8044c5082b33a1d3016c0b3 schema:location New York, NY
34 schema:name Springer New York
35 rdf:type schema:Organisation
36 N2eb91e7ea2a54d77981da929f593cec7 schema:familyName Rieder
37 schema:givenName Helmut
38 rdf:type schema:Person
39 N426eecc032b84ccfbb35c524393c531d schema:name readcube_id
40 schema:value d931f1afb4fa40380a542c0198bdcb271bce751cd0ee586370aedff8da6e4f25
41 rdf:type schema:PropertyValue
42 N5302730ad93c4725a66bc0268b9d833b rdf:first N6ba7f7def338418da9d24fe346c3f4cf
43 rdf:rest Nc7970c328f94440d9b9055d3f50cc6f8
44 N5bb1d71cff434d17863e507642253acc schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N6ba7f7def338418da9d24fe346c3f4cf schema:affiliation https://www.grid.ac/institutes/grid.5284.b
47 schema:familyName Huber
48 schema:givenName Mia
49 rdf:type schema:Person
50 N8350edb9836145cb8cd38e5c63060bd0 schema:name dimensions_id
51 schema:value pub.1045596237
52 rdf:type schema:PropertyValue
53 Nad3e9410fc3d40268ded804d2483691c schema:name doi
54 schema:value 10.1007/978-1-4612-2380-1_14
55 rdf:type schema:PropertyValue
56 Nb9f127970b154e46b617e6d7df9807c4 schema:isbn 978-0-387-94660-3
57 978-1-4612-2380-1
58 schema:name Robust Statistics, Data Analysis, and Computer Intensive Methods
59 rdf:type schema:Book
60 Nc7970c328f94440d9b9055d3f50cc6f8 rdf:first sg:person.0775337371.63
61 rdf:rest rdf:nil
62 Nf00a6346690c4d3ea4be24718d5f2d98 rdf:first N2eb91e7ea2a54d77981da929f593cec7
63 rdf:rest rdf:nil
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
71 schema:familyName Rousseeuw
72 schema:givenName Peter J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
74 rdf:type schema:Person
75 https://app.dimensions.ai/details/publication/pub.1107763504 schema:CreativeWork
76 https://doi.org/10.1002/0471725382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107763504
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0167-9473(92)00063-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1016832169
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0167-9473(92)90085-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1011332870
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/03610917708812052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027015171
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1214/aos/1176348890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408724
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
87 schema:name University of Antwerp, Belgium
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...