Singularities of Semiconcave Functions in Banach Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Paolo Albano , Piermarco Cannarsa

ABSTRACT

We study the structure of the set of points of nondifferentiability of semiconcave functions defined on an infinite dimensional space. We show that the singular set is ∞ — 1 countably rectifiable. Moreover, we give a sufficient condition for a singular point to be a propagation point of the singular set. As an application we consider a Mayer Optimal Control problem for an evolution equation of parabolic type. More... »

PAGES

171-190

Book

TITLE

Stochastic Analysis, Control, Optimization and Applications

ISBN

978-1-4612-7281-6
978-1-4612-1784-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1784-8_10

DOI

http://dx.doi.org/10.1007/978-1-4612-1784-8_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026817915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Albano", 
        "givenName": "Paolo", 
        "id": "sg:person.014423462135.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423462135.10"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007652222", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007652222", 
          "https://doi.org/10.1007/978-0-8176-4755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007652222", 
          "https://doi.org/10.1007/978-0-8176-4755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01189028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010243393", 
          "https://doi.org/10.1007/bf01189028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01189028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010243393", 
          "https://doi.org/10.1007/bf01189028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012286819", 
          "https://doi.org/10.1007/bf02392299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8849-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015334246", 
          "https://doi.org/10.1007/978-3-0348-8849-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8849-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015334246", 
          "https://doi.org/10.1007/978-3-0348-8849-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(90)90147-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022549597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023862956", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4260-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023862956", 
          "https://doi.org/10.1007/978-1-4612-4260-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4260-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023862956", 
          "https://doi.org/10.1007/978-1-4612-4260-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030183658", 
          "https://doi.org/10.1007/bf01234313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030183658", 
          "https://doi.org/10.1007/bf01234313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9461-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033090311", 
          "https://doi.org/10.1007/978-1-4684-9461-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9461-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033090311", 
          "https://doi.org/10.1007/978-1-4684-9461-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01187960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033394422", 
          "https://doi.org/10.1007/bf01187960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01187960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033394422", 
          "https://doi.org/10.1007/bf01187960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052475767", 
          "https://doi.org/10.1007/bf02567770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052475767", 
          "https://doi.org/10.1007/bf02567770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1975v027n03abeh002522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058199504"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "We study the structure of the set of points of nondifferentiability of semiconcave functions defined on an infinite dimensional space. We show that the singular set is \u221e \u2014 1 countably rectifiable. Moreover, we give a sufficient condition for a singular point to be a propagation point of the singular set. As an application we consider a Mayer Optimal Control problem for an evolution equation of parabolic type.", 
    "editor": [
      {
        "familyName": "McEneaney", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Yin", 
        "givenName": "G. George", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Qing", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1784-8_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7281-6", 
        "978-1-4612-1784-8"
      ], 
      "name": "Stochastic Analysis, Control, Optimization and Applications", 
      "type": "Book"
    }, 
    "name": "Singularities of Semiconcave Functions in Banach Spaces", 
    "pagination": "171-190", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026817915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1784-8_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7fc16f24b53e15a9778fd91b8ea9b09df623df3312706c401af2c36c85325d83"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Birkh\u00e4user Boston", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1784-8_10", 
      "https://app.dimensions.ai/details/publication/pub.1026817915"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-1784-8_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1784-8_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1784-8_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1784-8_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1784-8_10'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1784-8_10 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Na9f09c1266ae4f749004fb9cd4f65a15
4 schema:citation sg:pub.10.1007/978-0-8176-4755-1
5 sg:pub.10.1007/978-1-4612-4260-4
6 sg:pub.10.1007/978-1-4612-5561-1
7 sg:pub.10.1007/978-1-4684-9461-7
8 sg:pub.10.1007/978-3-0348-8849-3_6
9 sg:pub.10.1007/bf01187960
10 sg:pub.10.1007/bf01189028
11 sg:pub.10.1007/bf01234313
12 sg:pub.10.1007/bf02392299
13 sg:pub.10.1007/bf02567770
14 https://app.dimensions.ai/details/publication/pub.1007652222
15 https://app.dimensions.ai/details/publication/pub.1023862956
16 https://doi.org/10.1016/0022-1236(90)90147-d
17 https://doi.org/10.1070/sm1975v027n03abeh002522
18 schema:datePublished 1999
19 schema:datePublishedReg 1999-01-01
20 schema:description We study the structure of the set of points of nondifferentiability of semiconcave functions defined on an infinite dimensional space. We show that the singular set is ∞ — 1 countably rectifiable. Moreover, we give a sufficient condition for a singular point to be a propagation point of the singular set. As an application we consider a Mayer Optimal Control problem for an evolution equation of parabolic type.
21 schema:editor N7b88ff3dc66a42c49c02e53732ca45e5
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N476df33e9f4947c2a08c0aec8ef4d2a0
26 schema:name Singularities of Semiconcave Functions in Banach Spaces
27 schema:pagination 171-190
28 schema:productId N5956e29d67c7460e8aad5da90980eab3
29 N97c65b33af1642f4be3b1cc6eb6666da
30 Ncc90b8f60a42409bab2761ed761290f3
31 schema:publisher Ndabf2b3eee2d4090b8130ec3195aabf1
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026817915
33 https://doi.org/10.1007/978-1-4612-1784-8_10
34 schema:sdDatePublished 2019-04-16T09:18
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N3898d721b2444a9e8e135545ae7b38cc
37 schema:url https://link.springer.com/10.1007%2F978-1-4612-1784-8_10
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N3898d721b2444a9e8e135545ae7b38cc schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N46840a6dd84546609d92cb21e75ab098 rdf:first N727d6c2ccbba4a39862645750629ab11
44 rdf:rest rdf:nil
45 N476df33e9f4947c2a08c0aec8ef4d2a0 schema:isbn 978-1-4612-1784-8
46 978-1-4612-7281-6
47 schema:name Stochastic Analysis, Control, Optimization and Applications
48 rdf:type schema:Book
49 N504031719d874ff0ae1416fff648a20b rdf:first Nb78efe1fb03647f68d70fe386f4fba63
50 rdf:rest N46840a6dd84546609d92cb21e75ab098
51 N5956e29d67c7460e8aad5da90980eab3 schema:name doi
52 schema:value 10.1007/978-1-4612-1784-8_10
53 rdf:type schema:PropertyValue
54 N5d0ca996f1bd41b7aecf3b114cd9cd81 schema:familyName McEneaney
55 schema:givenName William M.
56 rdf:type schema:Person
57 N727d6c2ccbba4a39862645750629ab11 schema:familyName Zhang
58 schema:givenName Qing
59 rdf:type schema:Person
60 N7b88ff3dc66a42c49c02e53732ca45e5 rdf:first N5d0ca996f1bd41b7aecf3b114cd9cd81
61 rdf:rest N504031719d874ff0ae1416fff648a20b
62 N97c65b33af1642f4be3b1cc6eb6666da schema:name dimensions_id
63 schema:value pub.1026817915
64 rdf:type schema:PropertyValue
65 Na9f09c1266ae4f749004fb9cd4f65a15 rdf:first sg:person.014423462135.10
66 rdf:rest Nd29addcf81984d68936e45642f08ab86
67 Nb78efe1fb03647f68d70fe386f4fba63 schema:familyName Yin
68 schema:givenName G. George
69 rdf:type schema:Person
70 Ncc90b8f60a42409bab2761ed761290f3 schema:name readcube_id
71 schema:value 7fc16f24b53e15a9778fd91b8ea9b09df623df3312706c401af2c36c85325d83
72 rdf:type schema:PropertyValue
73 Nd29addcf81984d68936e45642f08ab86 rdf:first sg:person.014257010655.09
74 rdf:rest rdf:nil
75 Ndabf2b3eee2d4090b8130ec3195aabf1 schema:location Boston, MA
76 schema:name Birkhäuser Boston
77 rdf:type schema:Organisation
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
82 schema:name Applied Mathematics
83 rdf:type schema:DefinedTerm
84 sg:person.014257010655.09 schema:familyName Cannarsa
85 schema:givenName Piermarco
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
87 rdf:type schema:Person
88 sg:person.014423462135.10 schema:familyName Albano
89 schema:givenName Paolo
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423462135.10
91 rdf:type schema:Person
92 sg:pub.10.1007/978-0-8176-4755-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007652222
93 https://doi.org/10.1007/978-0-8176-4755-1
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-1-4612-4260-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023862956
96 https://doi.org/10.1007/978-1-4612-4260-4
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-1-4612-5561-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930842
99 https://doi.org/10.1007/978-1-4612-5561-1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-1-4684-9461-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033090311
102 https://doi.org/10.1007/978-1-4684-9461-7
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-0348-8849-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015334246
105 https://doi.org/10.1007/978-3-0348-8849-3_6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01187960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033394422
108 https://doi.org/10.1007/bf01187960
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01189028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010243393
111 https://doi.org/10.1007/bf01189028
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01234313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030183658
114 https://doi.org/10.1007/bf01234313
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf02392299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012286819
117 https://doi.org/10.1007/bf02392299
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf02567770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475767
120 https://doi.org/10.1007/bf02567770
121 rdf:type schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1007652222 schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1023862956 schema:CreativeWork
124 https://doi.org/10.1016/0022-1236(90)90147-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1022549597
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1070/sm1975v027n03abeh002522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058199504
127 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...