Interpolation of Spatial Data, Some Theory for Kriging View Full Text


Ontology type: schema:Book     


Book Info

DATE

1999

GENRE

Monograph

AUTHORS

Michael L. Stein

PUBLISHER

Springer New York

ABSTRACT

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1494-6

DOI

http://dx.doi.org/10.1007/978-1-4612-1494-6

ISBN

978-1-4612-7166-6 | 978-1-4612-1494-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004000982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Statistics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Michael L.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "genre": "monograph", 
    "id": "sg:pub.10.1007/978-1-4612-1494-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isbn": [
      "978-1-4612-7166-6", 
      "978-1-4612-1494-6"
    ], 
    "name": "Interpolation of Spatial Data, Some Theory for Kriging", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "130fd99c918d839ebee022da769fdd06e8c3e4e14def30406c68e18b9b0cec24"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1494-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004000982"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1494-6", 
      "https://app.dimensions.ai/details/publication/pub.1004000982"
    ], 
    "sdDataset": "books", 
    "sdDatePublished": "2019-04-12T03:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000000.jsonl", 
    "type": "Book", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-1494-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1494-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1494-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1494-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1494-6'


 

This table displays all metadata directly associated to this object as RDF triples.

44 TRIPLES      18 PREDICATES      23 URIs      18 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1494-6 schema:author N3cd15c1276bc4cb29013b4f27e4f3f1e
2 schema:datePublished 1999
3 schema:datePublishedReg 1999-01-01
4 schema:genre monograph
5 schema:inLanguage en
6 schema:isAccessibleForFree false
7 schema:isbn 978-1-4612-1494-6
8 978-1-4612-7166-6
9 schema:name Interpolation of Spatial Data, Some Theory for Kriging
10 schema:productId N1191967e2af04fc0a06a19a9c1265385
11 N940eefb61fad40858ec0cb537e70da65
12 Nf1d82be484094043a854ab80305b12ab
13 schema:publisher N1e99cbdfb2eb448895ecf93b2d70f397
14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004000982
15 https://doi.org/10.1007/978-1-4612-1494-6
16 schema:sdDatePublished 2019-04-12T03:50
17 schema:sdLicense https://scigraph.springernature.com/explorer/license/
18 schema:sdPublisher N1a91b8da019942a69baeb407749d9d35
19 schema:url https://link.springer.com/10.1007%2F978-1-4612-1494-6
20 sgo:license sg:explorer/license/
21 sgo:sdDataset books
22 rdf:type schema:Book
23 N1191967e2af04fc0a06a19a9c1265385 schema:name dimensions_id
24 schema:value pub.1004000982
25 rdf:type schema:PropertyValue
26 N1a91b8da019942a69baeb407749d9d35 schema:name Springer Nature - SN SciGraph project
27 rdf:type schema:Organization
28 N1e99cbdfb2eb448895ecf93b2d70f397 schema:location New York, NY
29 schema:name Springer New York
30 rdf:type schema:Organisation
31 N23a9c9cec92f46cba01efe216abdc980 schema:name Department of Statistics, University of Chicago, 60637, Chicago, IL, USA
32 rdf:type schema:Organization
33 N3cd15c1276bc4cb29013b4f27e4f3f1e rdf:first N8e16ff275ba64898aab0f4eebc6d9f7f
34 rdf:rest rdf:nil
35 N8e16ff275ba64898aab0f4eebc6d9f7f schema:affiliation N23a9c9cec92f46cba01efe216abdc980
36 schema:familyName Stein
37 schema:givenName Michael L.
38 rdf:type schema:Person
39 N940eefb61fad40858ec0cb537e70da65 schema:name readcube_id
40 schema:value 130fd99c918d839ebee022da769fdd06e8c3e4e14def30406c68e18b9b0cec24
41 rdf:type schema:PropertyValue
42 Nf1d82be484094043a854ab80305b12ab schema:name doi
43 schema:value 10.1007/978-1-4612-1494-6
44 rdf:type schema:PropertyValue
 




Preview window. Press ESC to close (or click here)


...