Canonical Bases of Higher-Level q-Deformed Fock Spaces and Kazhdan-Lusztig Polynomials View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2000

AUTHORS

Denis Uglov

ABSTRACT

The aim of this paper is to generalize some aspects of the recent work of Leclerc-Thibon and Varagnolo-Vasserot on the canonical bases of the level 1 q-deformed Fock spaces of Hayashi. Namely, we define canonical bases for the higher-level q-deformed Fock spaces of Jimbo-Misra-Miwa-Okado and establish a relation between these bases and (parabolic) Kazhdan-Lusztig polynomials for the affine Weyl group of type Ar-1(1). As an application, we derive an inversion formula for a subfamily of these polynomials. More... »

PAGES

249-299

References to SciGraph publications

  • 1991-03. Combinatorics of representations of atq=0 in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1995-03. Decomposition ofq-deformed Fock spaces in SELECTA MATHEMATICA
  • 1990-11. Crystal base for the basic representation of in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1996-11. Hecke algebras at roots of unity and crystal bases of quantum affine algebras in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1996-03. Perfect crystals andq-deformed Fock spaces in SELECTA MATHEMATICA
  • 1990-01. Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1982. Representations of affine lie algebras, hecke modular forms and korteweg—De vries type equations in LIE ALGEBRAS AND RELATED TOPICS
  • Book

    TITLE

    Physical Combinatorics

    ISBN

    978-1-4612-7121-5
    978-1-4612-1378-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4612-1378-9_8

    DOI

    http://dx.doi.org/10.1007/978-1-4612-1378-9_8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024102660


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2002", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cultural Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Language, Communication and Culture", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kyoto University", 
              "id": "https://www.grid.ac/institutes/grid.258799.8", 
              "name": [
                "Research Institute for Mathematical Sciences, Kyoto University, 606, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uglov", 
            "givenName": "Denis", 
            "id": "sg:person.010117662623.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010117662623.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02102090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013580086", 
              "https://doi.org/10.1007/bf02102090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02102090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013580086", 
              "https://doi.org/10.1007/bf02102090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1998.1783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018704387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02101678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033468114", 
              "https://doi.org/10.1007/bf02101678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02101678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033468114", 
              "https://doi.org/10.1007/bf02101678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035092413", 
              "https://doi.org/10.1007/bf02096497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035092413", 
              "https://doi.org/10.1007/bf02096497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01587950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035433309", 
              "https://doi.org/10.1007/bf01587950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(87)90232-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035680491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036679522", 
              "https://doi.org/10.1007/bf02099073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036679522", 
              "https://doi.org/10.1007/bf02099073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01587910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037987101", 
              "https://doi.org/10.1007/bf01587910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0093354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043000919", 
              "https://doi.org/10.1007/bfb0093354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-91-06321-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-93-06920-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250518452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083508901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/175/01840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089207815"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000", 
        "datePublishedReg": "2000-01-01", 
        "description": "The aim of this paper is to generalize some aspects of the recent work of Leclerc-Thibon and Varagnolo-Vasserot on the canonical bases of the level 1 q-deformed Fock spaces of Hayashi. Namely, we define canonical bases for the higher-level q-deformed Fock spaces of Jimbo-Misra-Miwa-Okado and establish a relation between these bases and (parabolic) Kazhdan-Lusztig polynomials for the affine Weyl group of type Ar-1(1). As an application, we derive an inversion formula for a subfamily of these polynomials.", 
        "editor": [
          {
            "familyName": "Kashiwara", 
            "givenName": "Masaki", 
            "type": "Person"
          }, 
          {
            "familyName": "Miwa", 
            "givenName": "Tetsuji", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4612-1378-9_8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-1-4612-7121-5", 
            "978-1-4612-1378-9"
          ], 
          "name": "Physical Combinatorics", 
          "type": "Book"
        }, 
        "name": "Canonical Bases of Higher-Level q-Deformed Fock Spaces and Kazhdan-Lusztig Polynomials", 
        "pagination": "249-299", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024102660"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4612-1378-9_8"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "72d49126f2bdefb2af0deaa521c5468ce1825f583b804299be0045700a7eef26"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston, MA", 
          "name": "Birkh\u00e4user Boston", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4612-1378-9_8", 
          "https://app.dimensions.ai/details/publication/pub.1024102660"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68962_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-1-4612-1378-9_8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1378-9_8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1378-9_8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1378-9_8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1378-9_8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4612-1378-9_8 schema:about anzsrc-for:20
    2 anzsrc-for:2002
    3 schema:author Nf76a4e8b94b54840959701bfac82efe7
    4 schema:citation sg:pub.10.1007/bf01587910
    5 sg:pub.10.1007/bf01587950
    6 sg:pub.10.1007/bf02096497
    7 sg:pub.10.1007/bf02099073
    8 sg:pub.10.1007/bf02101678
    9 sg:pub.10.1007/bf02102090
    10 sg:pub.10.1007/bfb0093354
    11 https://doi.org/10.1006/aima.1998.1783
    12 https://doi.org/10.1016/0021-8693(87)90232-8
    13 https://doi.org/10.1090/conm/175/01840
    14 https://doi.org/10.1215/kjm/1250518452
    15 https://doi.org/10.1215/s0012-7094-91-06321-0
    16 https://doi.org/10.1215/s0012-7094-93-06920-7
    17 schema:datePublished 2000
    18 schema:datePublishedReg 2000-01-01
    19 schema:description The aim of this paper is to generalize some aspects of the recent work of Leclerc-Thibon and Varagnolo-Vasserot on the canonical bases of the level 1 q-deformed Fock spaces of Hayashi. Namely, we define canonical bases for the higher-level q-deformed Fock spaces of Jimbo-Misra-Miwa-Okado and establish a relation between these bases and (parabolic) Kazhdan-Lusztig polynomials for the affine Weyl group of type Ar-1(1). As an application, we derive an inversion formula for a subfamily of these polynomials.
    20 schema:editor N99949f04df6543419ac579535f4e9188
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf Nbbdda55f192a4793a8c86bb1a6609005
    25 schema:name Canonical Bases of Higher-Level q-Deformed Fock Spaces and Kazhdan-Lusztig Polynomials
    26 schema:pagination 249-299
    27 schema:productId N85ca9b2ca4564fb496320b381f87fdfa
    28 Nac51a18d3fc04610a2e1f9f846014239
    29 Nf7d308c4d94a4315bfe0d50c1e597c01
    30 schema:publisher N42c0f565cd714ef8874e015f32efe01e
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024102660
    32 https://doi.org/10.1007/978-1-4612-1378-9_8
    33 schema:sdDatePublished 2019-04-16T08:57
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N32c1a041487e49829cec6d3a4621e0cb
    36 schema:url https://link.springer.com/10.1007%2F978-1-4612-1378-9_8
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N1e2eaddf86e5489c852adb1a36c9424f schema:familyName Miwa
    41 schema:givenName Tetsuji
    42 rdf:type schema:Person
    43 N32c1a041487e49829cec6d3a4621e0cb schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N42c0f565cd714ef8874e015f32efe01e schema:location Boston, MA
    46 schema:name Birkhäuser Boston
    47 rdf:type schema:Organisation
    48 N85ca9b2ca4564fb496320b381f87fdfa schema:name dimensions_id
    49 schema:value pub.1024102660
    50 rdf:type schema:PropertyValue
    51 N879822329a664981b5339ed7ffbbdd98 rdf:first N1e2eaddf86e5489c852adb1a36c9424f
    52 rdf:rest rdf:nil
    53 N99949f04df6543419ac579535f4e9188 rdf:first Nc224bf89e3404e9d8a1de13f5e1ab399
    54 rdf:rest N879822329a664981b5339ed7ffbbdd98
    55 Nac51a18d3fc04610a2e1f9f846014239 schema:name doi
    56 schema:value 10.1007/978-1-4612-1378-9_8
    57 rdf:type schema:PropertyValue
    58 Nbbdda55f192a4793a8c86bb1a6609005 schema:isbn 978-1-4612-1378-9
    59 978-1-4612-7121-5
    60 schema:name Physical Combinatorics
    61 rdf:type schema:Book
    62 Nc224bf89e3404e9d8a1de13f5e1ab399 schema:familyName Kashiwara
    63 schema:givenName Masaki
    64 rdf:type schema:Person
    65 Nf76a4e8b94b54840959701bfac82efe7 rdf:first sg:person.010117662623.52
    66 rdf:rest rdf:nil
    67 Nf7d308c4d94a4315bfe0d50c1e597c01 schema:name readcube_id
    68 schema:value 72d49126f2bdefb2af0deaa521c5468ce1825f583b804299be0045700a7eef26
    69 rdf:type schema:PropertyValue
    70 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Language, Communication and Culture
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:2002 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Cultural Studies
    75 rdf:type schema:DefinedTerm
    76 sg:person.010117662623.52 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
    77 schema:familyName Uglov
    78 schema:givenName Denis
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010117662623.52
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf01587910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037987101
    82 https://doi.org/10.1007/bf01587910
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01587950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035433309
    85 https://doi.org/10.1007/bf01587950
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf02096497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035092413
    88 https://doi.org/10.1007/bf02096497
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf02099073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036679522
    91 https://doi.org/10.1007/bf02099073
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf02101678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033468114
    94 https://doi.org/10.1007/bf02101678
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf02102090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013580086
    97 https://doi.org/10.1007/bf02102090
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bfb0093354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043000919
    100 https://doi.org/10.1007/bfb0093354
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1006/aima.1998.1783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018704387
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/0021-8693(87)90232-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035680491
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1090/conm/175/01840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089207815
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1215/kjm/1250518452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083508901
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1215/s0012-7094-91-06321-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419691
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1215/s0012-7094-93-06920-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419839
    113 rdf:type schema:CreativeWork
    114 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
    115 schema:name Research Institute for Mathematical Sciences, Kyoto University, 606, Kyoto, Japan
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...