Real-Time Collision Avoidance: Differential Game, Numerical Solution, and Synthesis of Strategies View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Rainer Lachner , Michael H. Breitner , H. Josef Pesch

ABSTRACT

Contemporary developments of on-board systems for automatic or semiautomatic driving include car collision avoidance systems. For this purpose two approaches based on pursuit-evasion differential games are compared. On a freeway a correct driver (evader) is faced with a wrong-way driver (pursuer), i.e., a person driving on the wrong side of the road. The correct driver tries to avoid collision against all possible maneuvers of the wrong-way driver and additionally tries to stay on the freeway. The representation of the optimal collision avoidance behavior along many optimal paths is used to synthesize an optimal collision avoidance strategy by means of neural networks. Examples of simulations that prove a satisfactory performance of the real-time collision avoidance scheme are presented. More... »

PAGES

115-135

Book

TITLE

Advances in Dynamic Games and Applications

ISBN

978-1-4612-7100-0
978-1-4612-1336-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6

DOI

http://dx.doi.org/10.1007/978-1-4612-1336-9_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039594255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5164.6", 
          "name": [
            "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lachner", 
        "givenName": "Rainer", 
        "id": "sg:person.013257060007.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257060007.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5164.6", 
          "name": [
            "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breitner", 
        "givenName": "Michael H.", 
        "id": "sg:person.010416245235.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416245235.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5164.6", 
          "name": [
            "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Contemporary developments of on-board systems for automatic or semiautomatic driving include car collision avoidance systems. For this purpose two approaches based on pursuit-evasion differential games are compared. On a freeway a correct driver (evader) is faced with a wrong-way driver (pursuer), i.e., a person driving on the wrong side of the road. The correct driver tries to avoid collision against all possible maneuvers of the wrong-way driver and additionally tries to stay on the freeway. The representation of the optimal collision avoidance behavior along many optimal paths is used to synthesize an optimal collision avoidance strategy by means of neural networks. Examples of simulations that prove a satisfactory performance of the real-time collision avoidance scheme are presented.", 
    "editor": [
      {
        "familyName": "Filar", 
        "givenName": "Jerzy A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gaitsgory", 
        "givenName": "Vladimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Mizukami", 
        "givenName": "Koichi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1336-9_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7100-0", 
        "978-1-4612-1336-9"
      ], 
      "name": "Advances in Dynamic Games and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "wrong-way drivers", 
      "car collision avoidance system", 
      "Time Collision Avoidance", 
      "optimal collision avoidance strategy", 
      "collision avoidance strategy", 
      "purpose two approaches", 
      "collision avoidance behavior", 
      "collision avoidance system", 
      "collision avoidance scheme", 
      "synthesis of strategies", 
      "neural network", 
      "correct driver", 
      "optimal path", 
      "collision avoidance", 
      "avoidance system", 
      "avoidance scheme", 
      "possible maneuvers", 
      "board system", 
      "examples of simulations", 
      "satisfactory performance", 
      "pursuit-evasion differential game", 
      "game", 
      "differential game", 
      "avoidance strategies", 
      "network", 
      "freeway", 
      "system", 
      "driving", 
      "scheme", 
      "representation", 
      "drivers", 
      "path", 
      "performance", 
      "simulations", 
      "road", 
      "strategies", 
      "solution", 
      "example", 
      "avoidance", 
      "wrong side", 
      "avoidance behavior", 
      "maneuvers", 
      "collisions", 
      "development", 
      "persons", 
      "means", 
      "contemporary developments", 
      "behavior", 
      "side", 
      "numerical solution", 
      "synthesis", 
      "approach"
    ], 
    "name": "Real-Time Collision Avoidance: Differential Game, Numerical Solution, and Synthesis of Strategies", 
    "pagination": "115-135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039594255"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1336-9_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1336-9_6", 
      "https://app.dimensions.ai/details/publication/pub.1039594255"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_82.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4612-1336-9_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1336-9_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf11a7bb413c74b2e80537110f247a547
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Contemporary developments of on-board systems for automatic or semiautomatic driving include car collision avoidance systems. For this purpose two approaches based on pursuit-evasion differential games are compared. On a freeway a correct driver (evader) is faced with a wrong-way driver (pursuer), i.e., a person driving on the wrong side of the road. The correct driver tries to avoid collision against all possible maneuvers of the wrong-way driver and additionally tries to stay on the freeway. The representation of the optimal collision avoidance behavior along many optimal paths is used to synthesize an optimal collision avoidance strategy by means of neural networks. Examples of simulations that prove a satisfactory performance of the real-time collision avoidance scheme are presented.
7 schema:editor Nb60e2126daae492aa9d73c8574b15d91
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N798f4aeeeb414421a5950e60356f2238
11 schema:keywords Time Collision Avoidance
12 approach
13 avoidance
14 avoidance behavior
15 avoidance scheme
16 avoidance strategies
17 avoidance system
18 behavior
19 board system
20 car collision avoidance system
21 collision avoidance
22 collision avoidance behavior
23 collision avoidance scheme
24 collision avoidance strategy
25 collision avoidance system
26 collisions
27 contemporary developments
28 correct driver
29 development
30 differential game
31 drivers
32 driving
33 example
34 examples of simulations
35 freeway
36 game
37 maneuvers
38 means
39 network
40 neural network
41 numerical solution
42 optimal collision avoidance strategy
43 optimal path
44 path
45 performance
46 persons
47 possible maneuvers
48 purpose two approaches
49 pursuit-evasion differential game
50 representation
51 road
52 satisfactory performance
53 scheme
54 side
55 simulations
56 solution
57 strategies
58 synthesis
59 synthesis of strategies
60 system
61 wrong side
62 wrong-way drivers
63 schema:name Real-Time Collision Avoidance: Differential Game, Numerical Solution, and Synthesis of Strategies
64 schema:pagination 115-135
65 schema:productId N410cc1842702459ab517c2e5166909a8
66 Na88f5522116645c887ef63f4936e6a9b
67 schema:publisher N34abc601fe3f47169b8e15b6683170ca
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039594255
69 https://doi.org/10.1007/978-1-4612-1336-9_6
70 schema:sdDatePublished 2022-12-01T06:55
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na3185e82040f428583df67fef75a6277
73 schema:url https://doi.org/10.1007/978-1-4612-1336-9_6
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N34abc601fe3f47169b8e15b6683170ca schema:name Springer Nature
78 rdf:type schema:Organisation
79 N410cc1842702459ab517c2e5166909a8 schema:name doi
80 schema:value 10.1007/978-1-4612-1336-9_6
81 rdf:type schema:PropertyValue
82 N6f13a428ddbb413788a12b50550fb6c5 rdf:first sg:person.014543723551.22
83 rdf:rest rdf:nil
84 N798f4aeeeb414421a5950e60356f2238 schema:isbn 978-1-4612-1336-9
85 978-1-4612-7100-0
86 schema:name Advances in Dynamic Games and Applications
87 rdf:type schema:Book
88 N87b1bb6dba754a10aaaf56a4e992dec1 rdf:first N8fad3ad69f1649c9828846c8dba03657
89 rdf:rest Ndbb759afb22843d782c2797802849719
90 N8fad3ad69f1649c9828846c8dba03657 schema:familyName Gaitsgory
91 schema:givenName Vladimir
92 rdf:type schema:Person
93 N98fcc1ae48d64d0099e237598dce14ec schema:familyName Mizukami
94 schema:givenName Koichi
95 rdf:type schema:Person
96 N9e5940399b1d40a2bde4058817a2b161 rdf:first sg:person.010416245235.49
97 rdf:rest N6f13a428ddbb413788a12b50550fb6c5
98 Na3185e82040f428583df67fef75a6277 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Na88f5522116645c887ef63f4936e6a9b schema:name dimensions_id
101 schema:value pub.1039594255
102 rdf:type schema:PropertyValue
103 Na98b4c79ec3746bba2a1515a90268e0d schema:familyName Filar
104 schema:givenName Jerzy A.
105 rdf:type schema:Person
106 Nb60e2126daae492aa9d73c8574b15d91 rdf:first Na98b4c79ec3746bba2a1515a90268e0d
107 rdf:rest N87b1bb6dba754a10aaaf56a4e992dec1
108 Ndbb759afb22843d782c2797802849719 rdf:first N98fcc1ae48d64d0099e237598dce14ec
109 rdf:rest rdf:nil
110 Nf11a7bb413c74b2e80537110f247a547 rdf:first sg:person.013257060007.17
111 rdf:rest N9e5940399b1d40a2bde4058817a2b161
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
116 schema:name Artificial Intelligence and Image Processing
117 rdf:type schema:DefinedTerm
118 sg:person.010416245235.49 schema:affiliation grid-institutes:grid.5164.6
119 schema:familyName Breitner
120 schema:givenName Michael H.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416245235.49
122 rdf:type schema:Person
123 sg:person.013257060007.17 schema:affiliation grid-institutes:grid.5164.6
124 schema:familyName Lachner
125 schema:givenName Rainer
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257060007.17
127 rdf:type schema:Person
128 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.5164.6
129 schema:familyName Pesch
130 schema:givenName H. Josef
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
132 rdf:type schema:Person
133 grid-institutes:grid.5164.6 schema:alternateName Institut für Mathematik, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany
134 schema:name Institut für Mathematik, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...