Real-Time Collision Avoidance: Differential Game, Numerical Solution, and Synthesis of Strategies View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Rainer Lachner , Michael H. Breitner , H. Josef Pesch

ABSTRACT

Contemporary developments of on-board systems for automatic or semiautomatic driving include car collision avoidance systems. For this purpose two approaches based on pursuit-evasion differential games are compared. On a freeway a correct driver (evader) is faced with a wrong-way driver (pursuer), i.e., a person driving on the wrong side of the road. The correct driver tries to avoid collision against all possible maneuvers of the wrong-way driver and additionally tries to stay on the freeway. The representation of the optimal collision avoidance behavior along many optimal paths is used to synthesize an optimal collision avoidance strategy by means of neural networks. Examples of simulations that prove a satisfactory performance of the real-time collision avoidance scheme are presented. More... »

PAGES

115-135

Book

TITLE

Advances in Dynamic Games and Applications

ISBN

978-1-4612-7100-0
978-1-4612-1336-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6

DOI

http://dx.doi.org/10.1007/978-1-4612-1336-9_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039594255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5164.6", 
          "name": [
            "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lachner", 
        "givenName": "Rainer", 
        "id": "sg:person.013257060007.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257060007.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5164.6", 
          "name": [
            "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breitner", 
        "givenName": "Michael H.", 
        "id": "sg:person.010416245235.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416245235.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5164.6", 
          "name": [
            "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Clausthal, Clausthal-Zellerfeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Contemporary developments of on-board systems for automatic or semiautomatic driving include car collision avoidance systems. For this purpose two approaches based on pursuit-evasion differential games are compared. On a freeway a correct driver (evader) is faced with a wrong-way driver (pursuer), i.e., a person driving on the wrong side of the road. The correct driver tries to avoid collision against all possible maneuvers of the wrong-way driver and additionally tries to stay on the freeway. The representation of the optimal collision avoidance behavior along many optimal paths is used to synthesize an optimal collision avoidance strategy by means of neural networks. Examples of simulations that prove a satisfactory performance of the real-time collision avoidance scheme are presented.", 
    "editor": [
      {
        "familyName": "Filar", 
        "givenName": "Jerzy A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gaitsgory", 
        "givenName": "Vladimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Mizukami", 
        "givenName": "Koichi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1336-9_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7100-0", 
        "978-1-4612-1336-9"
      ], 
      "name": "Advances in Dynamic Games and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "wrong-way drivers", 
      "car collision avoidance system", 
      "Time Collision Avoidance", 
      "optimal collision avoidance strategy", 
      "collision avoidance strategy", 
      "purpose two approaches", 
      "collision avoidance behavior", 
      "collision avoidance system", 
      "collision avoidance scheme", 
      "synthesis of strategies", 
      "neural network", 
      "correct driver", 
      "optimal path", 
      "collision avoidance", 
      "avoidance system", 
      "avoidance scheme", 
      "possible maneuvers", 
      "board system", 
      "examples of simulations", 
      "satisfactory performance", 
      "pursuit-evasion differential game", 
      "game", 
      "differential game", 
      "avoidance strategies", 
      "network", 
      "freeway", 
      "system", 
      "driving", 
      "scheme", 
      "representation", 
      "drivers", 
      "path", 
      "performance", 
      "simulations", 
      "road", 
      "strategies", 
      "solution", 
      "example", 
      "avoidance", 
      "wrong side", 
      "avoidance behavior", 
      "maneuvers", 
      "collisions", 
      "development", 
      "persons", 
      "means", 
      "contemporary developments", 
      "behavior", 
      "side", 
      "numerical solution", 
      "synthesis", 
      "approach"
    ], 
    "name": "Real-Time Collision Avoidance: Differential Game, Numerical Solution, and Synthesis of Strategies", 
    "pagination": "115-135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039594255"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1336-9_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1336-9_6", 
      "https://app.dimensions.ai/details/publication/pub.1039594255"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T07:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_6.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4612-1336-9_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1336-9_6'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1336-9_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Neacab22861ed4f948f10e179c7dab580
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description Contemporary developments of on-board systems for automatic or semiautomatic driving include car collision avoidance systems. For this purpose two approaches based on pursuit-evasion differential games are compared. On a freeway a correct driver (evader) is faced with a wrong-way driver (pursuer), i.e., a person driving on the wrong side of the road. The correct driver tries to avoid collision against all possible maneuvers of the wrong-way driver and additionally tries to stay on the freeway. The representation of the optimal collision avoidance behavior along many optimal paths is used to synthesize an optimal collision avoidance strategy by means of neural networks. Examples of simulations that prove a satisfactory performance of the real-time collision avoidance scheme are presented.
7 schema:editor N94c38018020c41b9a7ca80b84032382a
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nf9d3764c99174d2aa4e815aa2f74e3ab
11 schema:keywords Time Collision Avoidance
12 approach
13 avoidance
14 avoidance behavior
15 avoidance scheme
16 avoidance strategies
17 avoidance system
18 behavior
19 board system
20 car collision avoidance system
21 collision avoidance
22 collision avoidance behavior
23 collision avoidance scheme
24 collision avoidance strategy
25 collision avoidance system
26 collisions
27 contemporary developments
28 correct driver
29 development
30 differential game
31 drivers
32 driving
33 example
34 examples of simulations
35 freeway
36 game
37 maneuvers
38 means
39 network
40 neural network
41 numerical solution
42 optimal collision avoidance strategy
43 optimal path
44 path
45 performance
46 persons
47 possible maneuvers
48 purpose two approaches
49 pursuit-evasion differential game
50 representation
51 road
52 satisfactory performance
53 scheme
54 side
55 simulations
56 solution
57 strategies
58 synthesis
59 synthesis of strategies
60 system
61 wrong side
62 wrong-way drivers
63 schema:name Real-Time Collision Avoidance: Differential Game, Numerical Solution, and Synthesis of Strategies
64 schema:pagination 115-135
65 schema:productId N8c433d1e07bb40ba9b063a28cf8f0b6e
66 Nc0f86c4369cb4522b149c922b87d1846
67 schema:publisher Naf551682671b41a1a900f43f6d8bace9
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039594255
69 https://doi.org/10.1007/978-1-4612-1336-9_6
70 schema:sdDatePublished 2022-10-01T07:00
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nf5a235ba804a4317a11a4326a5dbce68
73 schema:url https://doi.org/10.1007/978-1-4612-1336-9_6
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N123baaf76db84df1af0f1bf1189554f3 schema:familyName Filar
78 schema:givenName Jerzy A.
79 rdf:type schema:Person
80 N5ad64ea9984b412ba4e7feb77ea3468e rdf:first Nbe346524904747f9881d73fa6b528a2e
81 rdf:rest Nc0552e6109c24de782471d0fd78ade6b
82 N857283a43cb64a0d8ce04c6597e6f484 rdf:first sg:person.014543723551.22
83 rdf:rest rdf:nil
84 N8c433d1e07bb40ba9b063a28cf8f0b6e schema:name doi
85 schema:value 10.1007/978-1-4612-1336-9_6
86 rdf:type schema:PropertyValue
87 N94c38018020c41b9a7ca80b84032382a rdf:first N123baaf76db84df1af0f1bf1189554f3
88 rdf:rest N5ad64ea9984b412ba4e7feb77ea3468e
89 Naf551682671b41a1a900f43f6d8bace9 schema:name Springer Nature
90 rdf:type schema:Organisation
91 Nbe346524904747f9881d73fa6b528a2e schema:familyName Gaitsgory
92 schema:givenName Vladimir
93 rdf:type schema:Person
94 Nc0552e6109c24de782471d0fd78ade6b rdf:first Ndd9b2d2c7f854d39931804827b0bb9c6
95 rdf:rest rdf:nil
96 Nc0f86c4369cb4522b149c922b87d1846 schema:name dimensions_id
97 schema:value pub.1039594255
98 rdf:type schema:PropertyValue
99 Nc6fa5de510aa47f79129ee56c54fb76c rdf:first sg:person.010416245235.49
100 rdf:rest N857283a43cb64a0d8ce04c6597e6f484
101 Ndd9b2d2c7f854d39931804827b0bb9c6 schema:familyName Mizukami
102 schema:givenName Koichi
103 rdf:type schema:Person
104 Neacab22861ed4f948f10e179c7dab580 rdf:first sg:person.013257060007.17
105 rdf:rest Nc6fa5de510aa47f79129ee56c54fb76c
106 Nf5a235ba804a4317a11a4326a5dbce68 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nf9d3764c99174d2aa4e815aa2f74e3ab schema:isbn 978-1-4612-1336-9
109 978-1-4612-7100-0
110 schema:name Advances in Dynamic Games and Applications
111 rdf:type schema:Book
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
116 schema:name Artificial Intelligence and Image Processing
117 rdf:type schema:DefinedTerm
118 sg:person.010416245235.49 schema:affiliation grid-institutes:grid.5164.6
119 schema:familyName Breitner
120 schema:givenName Michael H.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416245235.49
122 rdf:type schema:Person
123 sg:person.013257060007.17 schema:affiliation grid-institutes:grid.5164.6
124 schema:familyName Lachner
125 schema:givenName Rainer
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257060007.17
127 rdf:type schema:Person
128 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.5164.6
129 schema:familyName Pesch
130 schema:givenName H. Josef
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
132 rdf:type schema:Person
133 grid-institutes:grid.5164.6 schema:alternateName Institut für Mathematik, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany
134 schema:name Institut für Mathematik, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...