Development, Implementation and Applications of Single Epoch Analysis of MEG Signals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

L. C. Liu , A. A. Ioannides , H. Heer , M. Wagener , F. Delonge , H. Halling , H. W. Müller-Gärtner

ABSTRACT

In both MEG and EEG studies, single epoch analysis has become increasingly populär [1, 2]. In EEG the relationship between generators and signal is blurred by the high resistivity and inhomogeneity of the skull, making single trial analysis problematic because of low signal-to-noise ratio. For MEG, the signal-to-noise ratio in single trials is high, in the sense that, contributions from small cortical regions are easily detectable, although not easily distinguished from other contributions. In addition, single trial analysis of MEG signals incurs a high computational bürden and produces huge amount of output. In our earlier work [3, 4], we have addressed these problems by introducing a vector signal transformation called V3, which is the MEG analogue of the well-known Laplacian method of EEG. We have tested the accuracy of the V3 based estimates with Computer generated data and compared the results with the ones obtained from Magnetic Field Tomography (MFT) analysis of the same data. These tests have shown that the V3 based estimates are remarkably accurate when superficial generators are involved [4]. Estimators constructed from correlational measures based on the V3 and integrated over a period of time and/or a region, can be used to scan quickly and efficiently through all single trials. The V3 analysis has already been applied to the identification and quantification of auditory cortex activation and the investigation of gamma-band activity in single trials [4, 5]. Further correlation analysis of spatio-temporal V3 templates, has enabled us to describe qualitatively and quantitatively how patterns observed in the average signal are represented in single trials [6]: we showed conclusively that the average is a superposition of histories each reflected in different subsets of the epochs. In this paper, we will show another related application of the V3: it can be used as the basis for easy and fast inspection of data, and for identification of correlations in activity, in space and time, within the same hemisphere or across the hemispheres. More... »

PAGES

278-281

Book

TITLE

Biomag 96

ISBN

978-1-4612-7066-9
978-1-4612-1260-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_67

DOI

http://dx.doi.org/10.1007/978-1-4612-1260-7_67

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014944223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Medicine, D-52425\u00a0J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "L. C.", 
        "id": "sg:person.01052261460.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052261460.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Medicine, D-52425\u00a0J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "A. A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Electronics, Research Centre J\u00fclich, D-52425\u00a0J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heer", 
        "givenName": "H.", 
        "id": "sg:person.012212445706.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212445706.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Electronics, Research Centre J\u00fclich, D-52425\u00a0J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagener", 
        "givenName": "M.", 
        "id": "sg:person.014402767306.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402767306.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Electronics, Research Centre J\u00fclich, D-52425\u00a0J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delonge", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Electronics, Research Centre J\u00fclich, D-52425\u00a0J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halling", 
        "givenName": "H.", 
        "id": "sg:person.01141171235.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141171235.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Medicine, D-52425\u00a0J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller-G\u00e4rtner", 
        "givenName": "H. W.", 
        "id": "sg:person.014151466207.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151466207.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0013-4694(95)98480-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012848857"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "In both MEG and EEG studies, single epoch analysis has become increasingly popul\u00e4r [1, 2]. In EEG the relationship between generators and signal is blurred by the high resistivity and inhomogeneity of the skull, making single trial analysis problematic because of low signal-to-noise ratio. For MEG, the signal-to-noise ratio in single trials is high, in the sense that, contributions from small cortical regions are easily detectable, although not easily distinguished from other contributions. In addition, single trial analysis of MEG signals incurs a high computational b\u00fcrden and produces huge amount of output. In our earlier work [3, 4], we have addressed these problems by introducing a vector signal transformation called V3, which is the MEG analogue of the well-known Laplacian method of EEG. We have tested the accuracy of the V3 based estimates with Computer generated data and compared the results with the ones obtained from Magnetic Field Tomography (MFT) analysis of the same data. These tests have shown that the V3 based estimates are remarkably accurate when superficial generators are involved [4]. Estimators constructed from correlational measures based on the V3 and integrated over a period of time and/or a region, can be used to scan quickly and efficiently through all single trials. The V3 analysis has already been applied to the identification and quantification of auditory cortex activation and the investigation of gamma-band activity in single trials [4, 5]. Further correlation analysis of spatio-temporal V3 templates, has enabled us to describe qualitatively and quantitatively how patterns observed in the average signal are represented in single trials [6]: we showed conclusively that the average is a superposition of histories each reflected in different subsets of the epochs. In this paper, we will show another related application of the V3: it can be used as the basis for easy and fast inspection of data, and for identification of correlations in activity, in space and time, within the same hemisphere or across the hemispheres.", 
    "editor": [
      {
        "familyName": "Aine", 
        "givenName": "Cheryl J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Stroink", 
        "givenName": "Gerhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Wood", 
        "givenName": "Charles C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Okada", 
        "givenName": "Yoshio", 
        "type": "Person"
      }, 
      {
        "familyName": "Swithenby", 
        "givenName": "Stephen J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1260-7_67", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7066-9", 
        "978-1-4612-1260-7"
      ], 
      "name": "Biomag 96", 
      "type": "Book"
    }, 
    "name": "Development, Implementation and Applications of Single Epoch Analysis of MEG Signals", 
    "pagination": "278-281", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1260-7_67"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47332c459650ec0b6b9349ca3513f0d60fd54a9062445374faef43be072f40cf"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014944223"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1260-7_67", 
      "https://app.dimensions.ai/details/publication/pub.1014944223"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4612-1260-7_67"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_67'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_67'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_67'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_67'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1260-7_67 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne5a38ad69dae4acbb8d64e9442c76bc6
4 schema:citation https://doi.org/10.1016/0013-4694(95)98480-v
5 schema:datePublished 2000
6 schema:datePublishedReg 2000-01-01
7 schema:description In both MEG and EEG studies, single epoch analysis has become increasingly populär [1, 2]. In EEG the relationship between generators and signal is blurred by the high resistivity and inhomogeneity of the skull, making single trial analysis problematic because of low signal-to-noise ratio. For MEG, the signal-to-noise ratio in single trials is high, in the sense that, contributions from small cortical regions are easily detectable, although not easily distinguished from other contributions. In addition, single trial analysis of MEG signals incurs a high computational bürden and produces huge amount of output. In our earlier work [3, 4], we have addressed these problems by introducing a vector signal transformation called V3, which is the MEG analogue of the well-known Laplacian method of EEG. We have tested the accuracy of the V3 based estimates with Computer generated data and compared the results with the ones obtained from Magnetic Field Tomography (MFT) analysis of the same data. These tests have shown that the V3 based estimates are remarkably accurate when superficial generators are involved [4]. Estimators constructed from correlational measures based on the V3 and integrated over a period of time and/or a region, can be used to scan quickly and efficiently through all single trials. The V3 analysis has already been applied to the identification and quantification of auditory cortex activation and the investigation of gamma-band activity in single trials [4, 5]. Further correlation analysis of spatio-temporal V3 templates, has enabled us to describe qualitatively and quantitatively how patterns observed in the average signal are represented in single trials [6]: we showed conclusively that the average is a superposition of histories each reflected in different subsets of the epochs. In this paper, we will show another related application of the V3: it can be used as the basis for easy and fast inspection of data, and for identification of correlations in activity, in space and time, within the same hemisphere or across the hemispheres.
8 schema:editor N3528da30e1f548b4ad765f7b9579995d
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Ncfe74a5cebc94f148cd0eed00a92424a
13 schema:name Development, Implementation and Applications of Single Epoch Analysis of MEG Signals
14 schema:pagination 278-281
15 schema:productId N0327357f4a3a4e8ab7f2c1361bd86f12
16 N919fdd41f0074941ba8b69b0db04b5cb
17 Nc88ae24516444fae856680560fd9e949
18 schema:publisher N3911d1971e544f98a360a25adda4719a
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014944223
20 https://doi.org/10.1007/978-1-4612-1260-7_67
21 schema:sdDatePublished 2019-04-15T22:54
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N6590d6d98313447bbef29238597f8367
24 schema:url http://link.springer.com/10.1007/978-1-4612-1260-7_67
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N0327357f4a3a4e8ab7f2c1361bd86f12 schema:name readcube_id
29 schema:value 47332c459650ec0b6b9349ca3513f0d60fd54a9062445374faef43be072f40cf
30 rdf:type schema:PropertyValue
31 N068801269c87423180766a10fddda9a7 schema:name Institute of Medicine, D-52425 Jülich, Germany
32 rdf:type schema:Organization
33 N0ed41546fbfa44ba9238a5fc52b819f4 schema:familyName Okada
34 schema:givenName Yoshio
35 rdf:type schema:Person
36 N1276ccbd55104c9fbb8bbd9d3faebc7c schema:familyName Aine
37 schema:givenName Cheryl J.
38 rdf:type schema:Person
39 N1d65fdf27b7d4d1695fb289ecd55d765 rdf:first Nf2a236b3ff6345d785567e079e1c4071
40 rdf:rest Neb0883a325af4f8b93b8fa3e42919b2c
41 N2510ddbe18ec4793af5daedea75c2683 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
42 schema:familyName Delonge
43 schema:givenName F.
44 rdf:type schema:Person
45 N26a32b92f6be48f0aa263745dd5a46ac rdf:first sg:person.01141171235.18
46 rdf:rest N76b96245201e4c36a17f2d58e17e7db2
47 N2cf22c280c2243d1a9f6c91ed757610c rdf:first Nf4779200f2284b52a4ae0f36a5ebdd66
48 rdf:rest rdf:nil
49 N3528da30e1f548b4ad765f7b9579995d rdf:first N1276ccbd55104c9fbb8bbd9d3faebc7c
50 rdf:rest Na873266a699845de8964bbf97455d637
51 N3911d1971e544f98a360a25adda4719a schema:location New York, NY
52 schema:name Springer New York
53 rdf:type schema:Organisation
54 N4571561265264158b21fcbede4498b26 rdf:first sg:person.014402767306.53
55 rdf:rest Nde7906bc8cd64179bb7c0c8b2368872e
56 N6590d6d98313447bbef29238597f8367 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N76b96245201e4c36a17f2d58e17e7db2 rdf:first sg:person.014151466207.95
59 rdf:rest rdf:nil
60 N919fdd41f0074941ba8b69b0db04b5cb schema:name doi
61 schema:value 10.1007/978-1-4612-1260-7_67
62 rdf:type schema:PropertyValue
63 Na873266a699845de8964bbf97455d637 rdf:first Nd139024bb2af402ca8e9d0cffb943c23
64 rdf:rest N1d65fdf27b7d4d1695fb289ecd55d765
65 Nc88ae24516444fae856680560fd9e949 schema:name dimensions_id
66 schema:value pub.1014944223
67 rdf:type schema:PropertyValue
68 Ncfe74a5cebc94f148cd0eed00a92424a schema:isbn 978-1-4612-1260-7
69 978-1-4612-7066-9
70 schema:name Biomag 96
71 rdf:type schema:Book
72 Nd07897fb311148a69b5b11041d6992c8 schema:name Institute of Medicine, D-52425 Jülich, Germany
73 rdf:type schema:Organization
74 Nd139024bb2af402ca8e9d0cffb943c23 schema:familyName Stroink
75 schema:givenName Gerhard
76 rdf:type schema:Person
77 Nde7906bc8cd64179bb7c0c8b2368872e rdf:first N2510ddbe18ec4793af5daedea75c2683
78 rdf:rest N26a32b92f6be48f0aa263745dd5a46ac
79 Ne5a38ad69dae4acbb8d64e9442c76bc6 rdf:first sg:person.01052261460.51
80 rdf:rest Neee97e4b2b7a409186430ff99d4bf620
81 Neb0883a325af4f8b93b8fa3e42919b2c rdf:first N0ed41546fbfa44ba9238a5fc52b819f4
82 rdf:rest N2cf22c280c2243d1a9f6c91ed757610c
83 Ned2d1192668b4a98aa8242991c0b7aad rdf:first sg:person.012212445706.91
84 rdf:rest N4571561265264158b21fcbede4498b26
85 Neee97e4b2b7a409186430ff99d4bf620 rdf:first sg:person.0600434417.84
86 rdf:rest Ned2d1192668b4a98aa8242991c0b7aad
87 Nf2a236b3ff6345d785567e079e1c4071 schema:familyName Wood
88 schema:givenName Charles C.
89 rdf:type schema:Person
90 Nf4779200f2284b52a4ae0f36a5ebdd66 schema:familyName Swithenby
91 schema:givenName Stephen J.
92 rdf:type schema:Person
93 Nf9b5e2c86cec4af78ad586dc2acceb05 schema:name Institute of Medicine, D-52425 Jülich, Germany
94 rdf:type schema:Organization
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
99 schema:name Artificial Intelligence and Image Processing
100 rdf:type schema:DefinedTerm
101 sg:person.01052261460.51 schema:affiliation Nf9b5e2c86cec4af78ad586dc2acceb05
102 schema:familyName Liu
103 schema:givenName L. C.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052261460.51
105 rdf:type schema:Person
106 sg:person.01141171235.18 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
107 schema:familyName Halling
108 schema:givenName H.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141171235.18
110 rdf:type schema:Person
111 sg:person.012212445706.91 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
112 schema:familyName Heer
113 schema:givenName H.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212445706.91
115 rdf:type schema:Person
116 sg:person.014151466207.95 schema:affiliation Nd07897fb311148a69b5b11041d6992c8
117 schema:familyName Müller-Gärtner
118 schema:givenName H. W.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151466207.95
120 rdf:type schema:Person
121 sg:person.014402767306.53 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
122 schema:familyName Wagener
123 schema:givenName M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402767306.53
125 rdf:type schema:Person
126 sg:person.0600434417.84 schema:affiliation N068801269c87423180766a10fddda9a7
127 schema:familyName Ioannides
128 schema:givenName A. A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
130 rdf:type schema:Person
131 https://doi.org/10.1016/0013-4694(95)98480-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1012848857
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
134 schema:name Electronics, Research Centre Jülich, D-52425 Jülich, Germany
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...