Combination of point and surface matching techniques for accurate registration of MEG and MRI View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

P. D. Bamidis , A. A. Ioannides

ABSTRACT

The easiest and most commonly used method to register the MRI and MEG datasets is point matching, where a few ‘fiducial’ points, i.e. nasion, 2 preauriculars, are marked during the acquisition of either technique. Another methodology involves the use of a stereotactic frame. In either case, the registration of the two modalities requires the definition of the correct transformation matrix with respect to scaling, translation and rotation parameters. We have exploited both the above strategies and, in general, root mean square (RMS) mismatches per point of less than 1 mm (simulations) or 6 mm (general practice with real data) were achieved. More... »

PAGES

1126-1129

Book

TITLE

Biomag 96

ISBN

978-1-4612-7066-9
978-1-4612-1260-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_275

DOI

http://dx.doi.org/10.1007/978-1-4612-1260-7_275

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013940026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Physics Department, The Open University, Milton Keynes, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bamidis", 
        "givenName": "P. D.", 
        "id": "sg:person.01351517375.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351517375.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Physics Department, The Open University, Milton Keynes, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "A. A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1515/bmte.1991.36.s1.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001285577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-198901000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047107226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-198901000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047107226"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "The easiest and most commonly used method to register the MRI and MEG datasets is point matching, where a few \u2018fiducial\u2019 points, i.e. nasion, 2 preauriculars, are marked during the acquisition of either technique. Another methodology involves the use of a stereotactic frame. In either case, the registration of the two modalities requires the definition of the correct transformation matrix with respect to scaling, translation and rotation parameters. We have exploited both the above strategies and, in general, root mean square (RMS) mismatches per point of less than 1 mm (simulations) or 6 mm (general practice with real data) were achieved.", 
    "editor": [
      {
        "familyName": "Aine", 
        "givenName": "Cheryl J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Stroink", 
        "givenName": "Gerhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Wood", 
        "givenName": "Charles C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Okada", 
        "givenName": "Yoshio", 
        "type": "Person"
      }, 
      {
        "familyName": "Swithenby", 
        "givenName": "Stephen J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1260-7_275", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7066-9", 
        "978-1-4612-1260-7"
      ], 
      "name": "Biomag 96", 
      "type": "Book"
    }, 
    "name": "Combination of point and surface matching techniques for accurate registration of MEG and MRI", 
    "pagination": "1126-1129", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1260-7_275"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "426813360404d883c114cc12ace9aec8d2b53009cb16c4dd379f09737350df7c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013940026"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1260-7_275", 
      "https://app.dimensions.ai/details/publication/pub.1013940026"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000251.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4612-1260-7_275"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_275'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_275'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_275'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_275'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1260-7_275 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N9a6509d26b1d422da3ecbc328bf2fe2b
4 schema:citation https://doi.org/10.1097/00004728-198901000-00004
5 https://doi.org/10.1515/bmte.1991.36.s1.88
6 schema:datePublished 2000
7 schema:datePublishedReg 2000-01-01
8 schema:description The easiest and most commonly used method to register the MRI and MEG datasets is point matching, where a few ‘fiducial’ points, i.e. nasion, 2 preauriculars, are marked during the acquisition of either technique. Another methodology involves the use of a stereotactic frame. In either case, the registration of the two modalities requires the definition of the correct transformation matrix with respect to scaling, translation and rotation parameters. We have exploited both the above strategies and, in general, root mean square (RMS) mismatches per point of less than 1 mm (simulations) or 6 mm (general practice with real data) were achieved.
9 schema:editor N624b34e92ab9400f9b6a7bcd5c2ef4b7
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nedac4167b99f4df286322b630306ea2f
14 schema:name Combination of point and surface matching techniques for accurate registration of MEG and MRI
15 schema:pagination 1126-1129
16 schema:productId N8620ec8fa5954776a7665fb91055ad95
17 N9266359de3224d169068ff492bea1514
18 Ne17185a471d6407097cb927e658030f2
19 schema:publisher Nbbb92565ae174e2caefa5bb3e28262f2
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013940026
21 https://doi.org/10.1007/978-1-4612-1260-7_275
22 schema:sdDatePublished 2019-04-15T21:57
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Neb32ad8ee7e2427ea0c875cf3837121d
25 schema:url http://link.springer.com/10.1007/978-1-4612-1260-7_275
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0425ce0a111e4a3382a2aedfa7434a74 schema:familyName Aine
30 schema:givenName Cheryl J.
31 rdf:type schema:Person
32 N0cee2463e4634837824b4b64438a336e schema:familyName Swithenby
33 schema:givenName Stephen J.
34 rdf:type schema:Person
35 N0f9171709e5d48648e70328dbacd2343 schema:familyName Wood
36 schema:givenName Charles C.
37 rdf:type schema:Person
38 N10ec176490b7405ca2baf555e339c98e schema:familyName Okada
39 schema:givenName Yoshio
40 rdf:type schema:Person
41 N15ed3ad3622a4ea791d9dd4080ad1448 rdf:first Nfa052deeee054626a95d6b7fc27a7b6d
42 rdf:rest N8788398dac90445e8c05975751f78799
43 N51d1b52f96fb486d835dc26cbea084bc rdf:first N10ec176490b7405ca2baf555e339c98e
44 rdf:rest Nd02539caf1d045b5bd18a47dac745513
45 N624b34e92ab9400f9b6a7bcd5c2ef4b7 rdf:first N0425ce0a111e4a3382a2aedfa7434a74
46 rdf:rest N15ed3ad3622a4ea791d9dd4080ad1448
47 N8620ec8fa5954776a7665fb91055ad95 schema:name readcube_id
48 schema:value 426813360404d883c114cc12ace9aec8d2b53009cb16c4dd379f09737350df7c
49 rdf:type schema:PropertyValue
50 N8788398dac90445e8c05975751f78799 rdf:first N0f9171709e5d48648e70328dbacd2343
51 rdf:rest N51d1b52f96fb486d835dc26cbea084bc
52 N9127a46a3737470a9ad4711235c3c856 rdf:first sg:person.0600434417.84
53 rdf:rest rdf:nil
54 N9266359de3224d169068ff492bea1514 schema:name doi
55 schema:value 10.1007/978-1-4612-1260-7_275
56 rdf:type schema:PropertyValue
57 N9a6509d26b1d422da3ecbc328bf2fe2b rdf:first sg:person.01351517375.82
58 rdf:rest N9127a46a3737470a9ad4711235c3c856
59 Nbbb92565ae174e2caefa5bb3e28262f2 schema:location New York, NY
60 schema:name Springer New York
61 rdf:type schema:Organisation
62 Nd02539caf1d045b5bd18a47dac745513 rdf:first N0cee2463e4634837824b4b64438a336e
63 rdf:rest rdf:nil
64 Ne17185a471d6407097cb927e658030f2 schema:name dimensions_id
65 schema:value pub.1013940026
66 rdf:type schema:PropertyValue
67 Neb32ad8ee7e2427ea0c875cf3837121d schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nedac4167b99f4df286322b630306ea2f schema:isbn 978-1-4612-1260-7
70 978-1-4612-7066-9
71 schema:name Biomag 96
72 rdf:type schema:Book
73 Nfa052deeee054626a95d6b7fc27a7b6d schema:familyName Stroink
74 schema:givenName Gerhard
75 rdf:type schema:Person
76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
77 schema:name Medical and Health Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
80 schema:name Public Health and Health Services
81 rdf:type schema:DefinedTerm
82 sg:person.01351517375.82 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
83 schema:familyName Bamidis
84 schema:givenName P. D.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351517375.82
86 rdf:type schema:Person
87 sg:person.0600434417.84 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
88 schema:familyName Ioannides
89 schema:givenName A. A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
91 rdf:type schema:Person
92 https://doi.org/10.1097/00004728-198901000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047107226
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1515/bmte.1991.36.s1.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001285577
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.10837.3d schema:alternateName The Open University
97 schema:name Physics Department, The Open University, Milton Keynes, UK
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...