Reference noise cancellation: Optimizations and Caveats View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

G. R. Barnes , A. A. Ioannides

ABSTRACT

Reference noise cancellation algorithms theoretically allow the removal of external noise from biomagnetic measurements without attenuation of signal components in the same frequency band. The technique requires reference sensors that are insensitive to the biomagnetic signals of interest, yet subject to the same environmental noise. conditions. By estimating the correlation between reference (e.g. distant magnetometers) and measurement (e.g. gradiometer) Channels it is possible to form a prediction of the measurement Channel based on reference Channel Information; this prediction is defined as noise and subtracted from the data. The filters considered in this paper predict the measurement channel from the superposition of linearly weighted reference Channels; the weights are determined through a least squares minimization of the filter Output power. More... »

PAGES

7-10

Book

TITLE

Biomag 96

ISBN

978-1-4612-7066-9
978-1-4612-1260-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_2

DOI

http://dx.doi.org/10.1007/978-1-4612-1260-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032553763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institute of Medicine, Forschungszentrum J\u00fclich GmbH, J\u00fclich, D52425, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnes", 
        "givenName": "G. R.", 
        "id": "sg:person.015114223512.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114223512.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institute of Medicine, Forschungszentrum J\u00fclich GmbH, J\u00fclich, D52425, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "A. A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/proc.1975.10036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061442932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1976.10286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061443393"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Reference noise cancellation algorithms theoretically allow the removal of external noise from biomagnetic measurements without attenuation of signal components in the same frequency band. The technique requires reference sensors that are insensitive to the biomagnetic signals of interest, yet subject to the same environmental noise. conditions. By estimating the correlation between reference (e.g. distant magnetometers) and measurement (e.g. gradiometer) Channels it is possible to form a prediction of the measurement Channel based on reference Channel Information; this prediction is defined as noise and subtracted from the data. The filters considered in this paper predict the measurement channel from the superposition of linearly weighted reference Channels; the weights are determined through a least squares minimization of the filter Output power.", 
    "editor": [
      {
        "familyName": "Aine", 
        "givenName": "Cheryl J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Stroink", 
        "givenName": "Gerhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Wood", 
        "givenName": "Charles C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Okada", 
        "givenName": "Yoshio", 
        "type": "Person"
      }, 
      {
        "familyName": "Swithenby", 
        "givenName": "Stephen J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1260-7_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7066-9", 
        "978-1-4612-1260-7"
      ], 
      "name": "Biomag 96", 
      "type": "Book"
    }, 
    "name": "Reference noise cancellation: Optimizations and Caveats", 
    "pagination": "7-10", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1260-7_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b151ce6e48ac70e9ab056c2ed43949fe30a1c745223d4f8f936e4fa376650d0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032553763"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1260-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1032553763"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000263.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4612-1260-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1260-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1260-7_2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N0420c97acbc64097b1cc5ff29fdb976e
4 schema:citation https://doi.org/10.1109/proc.1975.10036
5 https://doi.org/10.1109/proc.1976.10286
6 schema:datePublished 2000
7 schema:datePublishedReg 2000-01-01
8 schema:description Reference noise cancellation algorithms theoretically allow the removal of external noise from biomagnetic measurements without attenuation of signal components in the same frequency band. The technique requires reference sensors that are insensitive to the biomagnetic signals of interest, yet subject to the same environmental noise. conditions. By estimating the correlation between reference (e.g. distant magnetometers) and measurement (e.g. gradiometer) Channels it is possible to form a prediction of the measurement Channel based on reference Channel Information; this prediction is defined as noise and subtracted from the data. The filters considered in this paper predict the measurement channel from the superposition of linearly weighted reference Channels; the weights are determined through a least squares minimization of the filter Output power.
9 schema:editor N3d37b13cc1e64395941fb1000a64df51
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0c6f245bd3bf432c9c56206b1d7afdb3
14 schema:name Reference noise cancellation: Optimizations and Caveats
15 schema:pagination 7-10
16 schema:productId N06c9c2f1f9c64df6acb7212a18784da7
17 Ne10b8d6fa5754a1386edf1f9684641ac
18 Nf1f1ac853b58415eb9ee6fcb11c796da
19 schema:publisher Nf55177e808fb4ece8a6625f058ce2a4f
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032553763
21 https://doi.org/10.1007/978-1-4612-1260-7_2
22 schema:sdDatePublished 2019-04-15T17:14
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N816bd53142534cc5b06bfd099738c59e
25 schema:url http://link.springer.com/10.1007/978-1-4612-1260-7_2
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0420c97acbc64097b1cc5ff29fdb976e rdf:first sg:person.015114223512.06
30 rdf:rest Nbfe03583694440e091da8ffe02e368b6
31 N06c9c2f1f9c64df6acb7212a18784da7 schema:name dimensions_id
32 schema:value pub.1032553763
33 rdf:type schema:PropertyValue
34 N0c6f245bd3bf432c9c56206b1d7afdb3 schema:isbn 978-1-4612-1260-7
35 978-1-4612-7066-9
36 schema:name Biomag 96
37 rdf:type schema:Book
38 N3d37b13cc1e64395941fb1000a64df51 rdf:first Nd5e73c6451f34f5ca1c1a1ab1a73f746
39 rdf:rest N59c1e2e7b9174432a3c05612863c0667
40 N59c1e2e7b9174432a3c05612863c0667 rdf:first Ne89f0e9e773041bd9e08b87b45eb057d
41 rdf:rest N8f111b62878d4b04a39ce47f22b1cec6
42 N63214d73ba4247ebb27b631563008eed schema:familyName Okada
43 schema:givenName Yoshio
44 rdf:type schema:Person
45 N6432867a704146b0ad4430bf148b3669 rdf:first N63214d73ba4247ebb27b631563008eed
46 rdf:rest Nd5beb8fcc39f40089e91bb3e548eca48
47 N816bd53142534cc5b06bfd099738c59e schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N8c2821568340434ab683a8d6f1365047 schema:familyName Wood
50 schema:givenName Charles C.
51 rdf:type schema:Person
52 N8f111b62878d4b04a39ce47f22b1cec6 rdf:first N8c2821568340434ab683a8d6f1365047
53 rdf:rest N6432867a704146b0ad4430bf148b3669
54 Nbfe03583694440e091da8ffe02e368b6 rdf:first sg:person.0600434417.84
55 rdf:rest rdf:nil
56 Nc92dd213888644168862793b4061af3a schema:familyName Swithenby
57 schema:givenName Stephen J.
58 rdf:type schema:Person
59 Nd5beb8fcc39f40089e91bb3e548eca48 rdf:first Nc92dd213888644168862793b4061af3a
60 rdf:rest rdf:nil
61 Nd5e73c6451f34f5ca1c1a1ab1a73f746 schema:familyName Aine
62 schema:givenName Cheryl J.
63 rdf:type schema:Person
64 Ne10b8d6fa5754a1386edf1f9684641ac schema:name readcube_id
65 schema:value 9b151ce6e48ac70e9ab056c2ed43949fe30a1c745223d4f8f936e4fa376650d0
66 rdf:type schema:PropertyValue
67 Ne89f0e9e773041bd9e08b87b45eb057d schema:familyName Stroink
68 schema:givenName Gerhard
69 rdf:type schema:Person
70 Nf1f1ac853b58415eb9ee6fcb11c796da schema:name doi
71 schema:value 10.1007/978-1-4612-1260-7_2
72 rdf:type schema:PropertyValue
73 Nf55177e808fb4ece8a6625f058ce2a4f schema:location New York, NY
74 schema:name Springer New York
75 rdf:type schema:Organisation
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
80 schema:name Other Physical Sciences
81 rdf:type schema:DefinedTerm
82 sg:person.015114223512.06 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
83 schema:familyName Barnes
84 schema:givenName G. R.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114223512.06
86 rdf:type schema:Person
87 sg:person.0600434417.84 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
88 schema:familyName Ioannides
89 schema:givenName A. A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
91 rdf:type schema:Person
92 https://doi.org/10.1109/proc.1975.10036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061442932
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/proc.1976.10286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061443393
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
97 schema:name Institute of Medicine, Forschungszentrum Jülich GmbH, Jülich, D52425, Germany
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...