A Lagrange Multiplier/Fictitious Domain/Collocation Method for Solid-Liquid Flows View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Tsorng-Whay Pan

ABSTRACT

In this article we discuss the application of a Lagrange multiplier based fictitious domain method to the numerical simulation of incompressible viscous flow modelled by the Navier-Stokes equations around moving rigid bodies; the rigid body motions are due to hydrodynamical forces and gravity. The solution method combines finite element approximations, time discretization by operator splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from the splitting method. The results of numerical experiments for 504 sedimenting cylinders in a two-dimensional channel and two balls sedimenting in a rectangular cylinder are presented. More... »

PAGES

97-121

References to SciGraph publications

Book

TITLE

Parallel Solution of Partial Differential Equations

ISBN

978-1-4612-7034-8
978-1-4612-1176-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1176-1_5

DOI

http://dx.doi.org/10.1007/978-1-4612-1176-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012889014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mathematics, University of Houston, 77204-3476, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Tsorng-Whay", 
        "id": "sg:person.013505452521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0764-4442(99)80376-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004909912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(77)90100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.24.010192.001123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015474338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0363(19970930)25:6<719::aid-fld585>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015745438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0363(19970930)25:6<719::aid-fld585>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015745438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90135-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017170756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(95)00068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018406845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(67)90037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038342964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(80)90007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038855309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(97)00116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042291480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0363(19960530)22:10<987::aid-fld394>3.0.co;2-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044594755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1969-0242393-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045407082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046669437", 
          "https://doi.org/10.1007/bf03167383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03167383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046669437", 
          "https://doi.org/10.1007/bf03167383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1570-8659(05)80035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047927182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0764-4442(97)89104-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049412620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12613-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049770519", 
          "https://doi.org/10.1007/978-3-662-12613-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12613-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049770519", 
          "https://doi.org/10.1007/978-3-662-12613-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112087001046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053822524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112073002016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054074894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112073002016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054074894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112073002016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054074894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054549065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054549065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0731054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827595282532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s106482759630365x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "In this article we discuss the application of a Lagrange multiplier based fictitious domain method to the numerical simulation of incompressible viscous flow modelled by the Navier-Stokes equations around moving rigid bodies; the rigid body motions are due to hydrodynamical forces and gravity. The solution method combines finite element approximations, time discretization by operator splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from the splitting method. The results of numerical experiments for 504 sedimenting cylinders in a two-dimensional channel and two balls sedimenting in a rectangular cylinder are presented.", 
    "editor": [
      {
        "familyName": "Bj\u00f8rstad", 
        "givenName": "Petter", 
        "type": "Person"
      }, 
      {
        "familyName": "Luskin", 
        "givenName": "Mitchell", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1176-1_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7034-8", 
        "978-1-4612-1176-1"
      ], 
      "name": "Parallel Solution of Partial Differential Equations", 
      "type": "Book"
    }, 
    "name": "A Lagrange Multiplier/Fictitious Domain/Collocation Method for Solid-Liquid Flows", 
    "pagination": "97-121", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012889014"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1176-1_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d6724544dcf276f5f7d9bfa00b3c02ff4d93b30f526a01c97af6485bf1e271e"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1176-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1012889014"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-1176-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1176-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1176-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1176-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1176-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1176-1_5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4ddd20dee49a4dcebeb843de0456357c
4 schema:citation sg:pub.10.1007/978-3-662-12613-4
5 sg:pub.10.1007/bf03167383
6 https://doi.org/10.1002/(sici)1097-0363(19960530)22:10<987::aid-fld394>3.0.co;2-7
7 https://doi.org/10.1002/(sici)1097-0363(19970930)25:6<719::aid-fld585>3.0.co;2-k
8 https://doi.org/10.1016/0021-9991(67)90037-x
9 https://doi.org/10.1016/0021-9991(77)90100-0
10 https://doi.org/10.1016/0021-9991(80)90007-8
11 https://doi.org/10.1016/0045-7825(94)90022-1
12 https://doi.org/10.1016/0045-7825(94)90135-x
13 https://doi.org/10.1016/0301-9322(95)00068-2
14 https://doi.org/10.1016/s0045-7825(97)00116-3
15 https://doi.org/10.1016/s0764-4442(97)89104-5
16 https://doi.org/10.1016/s0764-4442(99)80376-0
17 https://doi.org/10.1016/s1570-8659(05)80035-3
18 https://doi.org/10.1017/s0022112073002016
19 https://doi.org/10.1017/s0022112087001046
20 https://doi.org/10.1090/s0025-5718-1969-0242393-5
21 https://doi.org/10.1137/0731054
22 https://doi.org/10.1137/s1064827595282532
23 https://doi.org/10.1137/s106482759630365x
24 https://doi.org/10.1146/annurev.fl.24.010192.001123
25 schema:datePublished 2000
26 schema:datePublishedReg 2000-01-01
27 schema:description In this article we discuss the application of a Lagrange multiplier based fictitious domain method to the numerical simulation of incompressible viscous flow modelled by the Navier-Stokes equations around moving rigid bodies; the rigid body motions are due to hydrodynamical forces and gravity. The solution method combines finite element approximations, time discretization by operator splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from the splitting method. The results of numerical experiments for 504 sedimenting cylinders in a two-dimensional channel and two balls sedimenting in a rectangular cylinder are presented.
28 schema:editor N9721ef85f8934429b777a6e9a32037f6
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N52619f551025434dbd2873a657402e1b
33 schema:name A Lagrange Multiplier/Fictitious Domain/Collocation Method for Solid-Liquid Flows
34 schema:pagination 97-121
35 schema:productId N0e314e941b7b4166bb462fd01251da71
36 Nc3c8ddf020db43969d85be253842e6d6
37 Ne7ffcf3ec87946d4ae83274974b2be9f
38 schema:publisher Ne5057be8dd094a3084586cb3a92b1bb8
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012889014
40 https://doi.org/10.1007/978-1-4612-1176-1_5
41 schema:sdDatePublished 2019-04-16T09:04
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N13361892505e47a7a0cbd3d70cd899c0
44 schema:url https://link.springer.com/10.1007%2F978-1-4612-1176-1_5
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N0e314e941b7b4166bb462fd01251da71 schema:name dimensions_id
49 schema:value pub.1012889014
50 rdf:type schema:PropertyValue
51 N13361892505e47a7a0cbd3d70cd899c0 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N4ddd20dee49a4dcebeb843de0456357c rdf:first sg:person.013505452521.86
54 rdf:rest rdf:nil
55 N4ff3c838f0d84145a01f72e207c8cd55 schema:familyName Bjørstad
56 schema:givenName Petter
57 rdf:type schema:Person
58 N52619f551025434dbd2873a657402e1b schema:isbn 978-1-4612-1176-1
59 978-1-4612-7034-8
60 schema:name Parallel Solution of Partial Differential Equations
61 rdf:type schema:Book
62 N9721ef85f8934429b777a6e9a32037f6 rdf:first N4ff3c838f0d84145a01f72e207c8cd55
63 rdf:rest N9a7d5c0944824c9ba90f5c261c817aef
64 N9a7d5c0944824c9ba90f5c261c817aef rdf:first Ne5bcf03a874b47db9209f4252e420ae4
65 rdf:rest rdf:nil
66 Nc3c8ddf020db43969d85be253842e6d6 schema:name readcube_id
67 schema:value 3d6724544dcf276f5f7d9bfa00b3c02ff4d93b30f526a01c97af6485bf1e271e
68 rdf:type schema:PropertyValue
69 Ne5057be8dd094a3084586cb3a92b1bb8 schema:location New York, NY
70 schema:name Springer New York
71 rdf:type schema:Organisation
72 Ne5bcf03a874b47db9209f4252e420ae4 schema:familyName Luskin
73 schema:givenName Mitchell
74 rdf:type schema:Person
75 Ne7ffcf3ec87946d4ae83274974b2be9f schema:name doi
76 schema:value 10.1007/978-1-4612-1176-1_5
77 rdf:type schema:PropertyValue
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
82 schema:name Numerical and Computational Mathematics
83 rdf:type schema:DefinedTerm
84 sg:person.013505452521.86 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
85 schema:familyName Pan
86 schema:givenName Tsorng-Whay
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86
88 rdf:type schema:Person
89 sg:pub.10.1007/978-3-662-12613-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049770519
90 https://doi.org/10.1007/978-3-662-12613-4
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf03167383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046669437
93 https://doi.org/10.1007/bf03167383
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/(sici)1097-0363(19960530)22:10<987::aid-fld394>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044594755
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/(sici)1097-0363(19970930)25:6<719::aid-fld585>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1015745438
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0021-9991(67)90037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038342964
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0021-9991(77)90100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007370794
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0021-9991(80)90007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038855309
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0045-7825(94)90022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054549065
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0045-7825(94)90135-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017170756
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0301-9322(95)00068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018406845
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0045-7825(97)00116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042291480
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0764-4442(97)89104-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049412620
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0764-4442(99)80376-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004909912
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s1570-8659(05)80035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047927182
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1017/s0022112073002016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054074894
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1017/s0022112087001046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053822524
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1090/s0025-5718-1969-0242393-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045407082
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1137/0731054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853925
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1137/s1064827595282532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884295
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1137/s106482759630365x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884430
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1146/annurev.fl.24.010192.001123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015474338
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
134 schema:name Department of Mathematics, University of Houston, 77204-3476, Houston, TX, USA
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...