Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

Tosio Kato

ABSTRACT

This paper is concerned with the question of convergence of the nonstationary, incompressible Navier-Stokes flow u = uv to the Euler flow u as the viscosity v tends to zero. If the underlying space domain is all of Rm, the convergence has been proved by several authors under appropriate assumptions on the convergence of the data (initial condition and external force); see Golovkin [1] and McGrath [2] for m = 2 and all time, and Swann [3] and the author [4,5] for m = 3 and short time. The case m ⩾ 4 can be handled in the same way; in fact, the simple method given in [5] applies to any dimension. All these results refer to strong solutions (or even classical solutions, depending on the data) of the Navier-Stokes equation. More... »

PAGES

85-98

References to SciGraph publications

Book

TITLE

Seminar on Nonlinear Partial Differential Equations

ISBN

978-1-4612-7013-3
978-1-4612-1110-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-1110-5_6

DOI

http://dx.doi.org/10.1007/978-1-4612-1110-5_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019202972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Math Department, University of California, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Tosio", 
        "id": "sg:person.0672636204.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02392043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010160300", 
          "https://doi.org/10.1007/bf02392043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014986647", 
          "https://doi.org/10.1007/bf00251436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014986647", 
          "https://doi.org/10.1007/bf00251436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(84)90024-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018776965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.3210040121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036595171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(74)90027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044433914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1971-0277929-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045191704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047957687", 
          "https://doi.org/10.1007/bf00251588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047957687", 
          "https://doi.org/10.1007/bf00251588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048580040", 
          "https://doi.org/10.1007/bfb0067080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(75)90052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049864504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(72)90003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050772760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676014"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "This paper is concerned with the question of convergence of the nonstationary, incompressible Navier-Stokes flow u = uv to the Euler flow u as the viscosity v tends to zero. If the underlying space domain is all of Rm, the convergence has been proved by several authors under appropriate assumptions on the convergence of the data (initial condition and external force); see Golovkin [1] and McGrath [2] for m = 2 and all time, and Swann [3] and the author [4,5] for m = 3 and short time. The case m \u2a7e 4 can be handled in the same way; in fact, the simple method given in [5] applies to any dimension. All these results refer to strong solutions (or even classical solutions, depending on the data) of the Navier-Stokes equation.", 
    "editor": [
      {
        "familyName": "Chern", 
        "givenName": "S. S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-1110-5_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7013-3", 
        "978-1-4612-1110-5"
      ], 
      "name": "Seminar on Nonlinear Partial Differential Equations", 
      "type": "Book"
    }, 
    "name": "Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary", 
    "pagination": "85-98", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019202972"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-1110-5_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b7ed955dd5652b708d2897d5ffe3f3eebe2d7d5ea0e80b06151ccdb0d13e18f"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-1110-5_6", 
      "https://app.dimensions.ai/details/publication/pub.1019202972"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-1110-5_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1110-5_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1110-5_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1110-5_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-1110-5_6'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-1110-5_6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N4297b0c7d08744a7bfaf65d0f20a1c62
4 schema:citation sg:pub.10.1007/bf00251436
5 sg:pub.10.1007/bf00251588
6 sg:pub.10.1007/bf02392043
7 sg:pub.10.1007/bf02547354
8 sg:pub.10.1007/bfb0067080
9 https://doi.org/10.1002/mana.3210040121
10 https://doi.org/10.1016/0022-1236(72)90003-1
11 https://doi.org/10.1016/0022-1236(74)90027-5
12 https://doi.org/10.1016/0022-1236(75)90052-x
13 https://doi.org/10.1016/0022-1236(84)90024-7
14 https://doi.org/10.1090/s0002-9947-1971-0277929-7
15 https://doi.org/10.2307/1970699
16 schema:datePublished 1984
17 schema:datePublishedReg 1984-01-01
18 schema:description This paper is concerned with the question of convergence of the nonstationary, incompressible Navier-Stokes flow u = uv to the Euler flow u as the viscosity v tends to zero. If the underlying space domain is all of Rm, the convergence has been proved by several authors under appropriate assumptions on the convergence of the data (initial condition and external force); see Golovkin [1] and McGrath [2] for m = 2 and all time, and Swann [3] and the author [4,5] for m = 3 and short time. The case m ⩾ 4 can be handled in the same way; in fact, the simple method given in [5] applies to any dimension. All these results refer to strong solutions (or even classical solutions, depending on the data) of the Navier-Stokes equation.
19 schema:editor N6578f722d828400790b62e2bf3bd1451
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N85a2e988397d4bac91053410f92c3965
24 schema:name Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary
25 schema:pagination 85-98
26 schema:productId N0c80291e37e24ef2939ffd22081bd37d
27 N1e098fe129d84325a4c5f90829513d91
28 Na79ac41c75314b048e2d0d30f900f440
29 schema:publisher N58105e662da54f3c94be10edd14a2c74
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202972
31 https://doi.org/10.1007/978-1-4612-1110-5_6
32 schema:sdDatePublished 2019-04-16T09:18
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nedf18a85da9a42059c3dc8a9916dfc80
35 schema:url https://link.springer.com/10.1007%2F978-1-4612-1110-5_6
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N0c80291e37e24ef2939ffd22081bd37d schema:name dimensions_id
40 schema:value pub.1019202972
41 rdf:type schema:PropertyValue
42 N1e098fe129d84325a4c5f90829513d91 schema:name doi
43 schema:value 10.1007/978-1-4612-1110-5_6
44 rdf:type schema:PropertyValue
45 N4297b0c7d08744a7bfaf65d0f20a1c62 rdf:first sg:person.0672636204.67
46 rdf:rest rdf:nil
47 N58105e662da54f3c94be10edd14a2c74 schema:location New York, NY
48 schema:name Springer New York
49 rdf:type schema:Organisation
50 N6578f722d828400790b62e2bf3bd1451 rdf:first Nd161d1956deb4c95ad8cfd5892cac3ed
51 rdf:rest rdf:nil
52 N85a2e988397d4bac91053410f92c3965 schema:isbn 978-1-4612-1110-5
53 978-1-4612-7013-3
54 schema:name Seminar on Nonlinear Partial Differential Equations
55 rdf:type schema:Book
56 Na79ac41c75314b048e2d0d30f900f440 schema:name readcube_id
57 schema:value 5b7ed955dd5652b708d2897d5ffe3f3eebe2d7d5ea0e80b06151ccdb0d13e18f
58 rdf:type schema:PropertyValue
59 Nd161d1956deb4c95ad8cfd5892cac3ed schema:familyName Chern
60 schema:givenName S. S.
61 rdf:type schema:Person
62 Nedf18a85da9a42059c3dc8a9916dfc80 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
68 schema:name Statistics
69 rdf:type schema:DefinedTerm
70 sg:person.0672636204.67 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
71 schema:familyName Kato
72 schema:givenName Tosio
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67
74 rdf:type schema:Person
75 sg:pub.10.1007/bf00251436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014986647
76 https://doi.org/10.1007/bf00251436
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf00251588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047957687
79 https://doi.org/10.1007/bf00251588
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf02392043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010160300
82 https://doi.org/10.1007/bf02392043
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
85 https://doi.org/10.1007/bf02547354
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bfb0067080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048580040
88 https://doi.org/10.1007/bfb0067080
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/mana.3210040121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036595171
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0022-1236(72)90003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050772760
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0022-1236(74)90027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044433914
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-1236(75)90052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049864504
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0022-1236(84)90024-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018776965
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1090/s0002-9947-1971-0277929-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045191704
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1970699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676014
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
105 schema:name Math Department, University of California, Berkeley, California, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...