Information Theory and an Extension of the Maximum Likelihood Principle View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

Hirotogu Akaike

ABSTRACT

In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting. More... »

PAGES

610-624

References to SciGraph publications

  • 1969-12. Fitting autoregressive models for prediction in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • 1970-12. Statistical predictor identification in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • 1971-12. Autoregressive model fitting for control in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • Book

    TITLE

    Breakthroughs in Statistics

    ISBN

    978-0-387-94037-3
    978-1-4612-0919-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4612-0919-5_38

    DOI

    http://dx.doi.org/10.1007/978-1-4612-0919-5_38

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029175869


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institute of Statistical Mathematics, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akaike", 
            "givenName": "Hirotogu", 
            "id": "sg:person.013213143073.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013213143073.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02532251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001604786", 
              "https://doi.org/10.1007/bf02532251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02532251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001604786", 
              "https://doi.org/10.1007/bf02532251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02479221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003034557", 
              "https://doi.org/10.1007/bf02479221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02479221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003034557", 
              "https://doi.org/10.1007/bf02479221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1943-0012401-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022628174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177729694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026070931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(72)90008-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041545934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(72)90008-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041545934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02506337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048838634", 
              "https://doi.org/10.1007/bf02506337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02506337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048838634", 
              "https://doi.org/10.1007/bf02506337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100009580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053875849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1966.10490322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058283758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177696977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064398799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177704014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064400342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177729032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064401603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177729952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064401894"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992", 
        "datePublishedReg": "1992-01-01", 
        "description": "In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.", 
        "editor": [
          {
            "familyName": "Kotz", 
            "givenName": "Samuel", 
            "type": "Person"
          }, 
          {
            "familyName": "Johnson", 
            "givenName": "Norman L.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4612-0919-5_38", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-0-387-94037-3", 
            "978-1-4612-0919-5"
          ], 
          "name": "Breakthroughs in Statistics", 
          "type": "Book"
        }, 
        "name": "Information Theory and an Extension of the Maximum Likelihood Principle", 
        "pagination": "610-624", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029175869"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4612-0919-5_38"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8afd84aed40b05d5528876fa95e0f97fa8ce810369d936cfe6f7101229a485c2"
            ]
          }
        ], 
        "publisher": {
          "location": "New York, NY", 
          "name": "Springer New York", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4612-0919-5_38", 
          "https://app.dimensions.ai/details/publication/pub.1029175869"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T10:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106840_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-1-4612-0919-5_38"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0919-5_38'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0919-5_38'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0919-5_38'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0919-5_38'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4612-0919-5_38 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Ndc1d947e1d844a93bdc8cdd9f8cdc8ee
    4 schema:citation sg:pub.10.1007/bf02479221
    5 sg:pub.10.1007/bf02506337
    6 sg:pub.10.1007/bf02532251
    7 https://doi.org/10.1016/0005-1098(72)90008-8
    8 https://doi.org/10.1017/s0305004100009580
    9 https://doi.org/10.1080/00401706.1966.10490322
    10 https://doi.org/10.1090/s0002-9947-1943-0012401-3
    11 https://doi.org/10.1214/aoms/1177696977
    12 https://doi.org/10.1214/aoms/1177704014
    13 https://doi.org/10.1214/aoms/1177729032
    14 https://doi.org/10.1214/aoms/1177729694
    15 https://doi.org/10.1214/aoms/1177729952
    16 schema:datePublished 1992
    17 schema:datePublishedReg 1992-01-01
    18 schema:description In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.
    19 schema:editor Ne58b2fdafa40475b8d7ff5a1f6d64e0a
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N8852d8fced364feca7e5ea34045fb2e9
    24 schema:name Information Theory and an Extension of the Maximum Likelihood Principle
    25 schema:pagination 610-624
    26 schema:productId N073f7f7d85794f179f6be09cf7553f05
    27 N207e1e1f9188424b874b4064fb1dca00
    28 Nbdbc60424d8f4a5e828cafc7b06ffe84
    29 schema:publisher Naa8832928f3a43bc8c2fdbf166566b10
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029175869
    31 https://doi.org/10.1007/978-1-4612-0919-5_38
    32 schema:sdDatePublished 2019-04-16T10:11
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N44f7ff5f47c04ffbb87d80bdc023dcd1
    35 schema:url https://link.springer.com/10.1007%2F978-1-4612-0919-5_38
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N073f7f7d85794f179f6be09cf7553f05 schema:name readcube_id
    40 schema:value 8afd84aed40b05d5528876fa95e0f97fa8ce810369d936cfe6f7101229a485c2
    41 rdf:type schema:PropertyValue
    42 N207e1e1f9188424b874b4064fb1dca00 schema:name dimensions_id
    43 schema:value pub.1029175869
    44 rdf:type schema:PropertyValue
    45 N44f7ff5f47c04ffbb87d80bdc023dcd1 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N488047f2e29141c3ad0775d521da3642 schema:familyName Johnson
    48 schema:givenName Norman L.
    49 rdf:type schema:Person
    50 N5129bb2477254cc68b45a6093e3d269d rdf:first N488047f2e29141c3ad0775d521da3642
    51 rdf:rest rdf:nil
    52 N8852d8fced364feca7e5ea34045fb2e9 schema:isbn 978-0-387-94037-3
    53 978-1-4612-0919-5
    54 schema:name Breakthroughs in Statistics
    55 rdf:type schema:Book
    56 N8a68799971e14c49a0761aff6772c0ea schema:familyName Kotz
    57 schema:givenName Samuel
    58 rdf:type schema:Person
    59 Naa8832928f3a43bc8c2fdbf166566b10 schema:location New York, NY
    60 schema:name Springer New York
    61 rdf:type schema:Organisation
    62 Nbdbc60424d8f4a5e828cafc7b06ffe84 schema:name doi
    63 schema:value 10.1007/978-1-4612-0919-5_38
    64 rdf:type schema:PropertyValue
    65 Nc406e86b237e4c648119b1a03810f4b6 schema:name Institute of Statistical Mathematics, Canada
    66 rdf:type schema:Organization
    67 Ndc1d947e1d844a93bdc8cdd9f8cdc8ee rdf:first sg:person.013213143073.79
    68 rdf:rest rdf:nil
    69 Ne58b2fdafa40475b8d7ff5a1f6d64e0a rdf:first N8a68799971e14c49a0761aff6772c0ea
    70 rdf:rest N5129bb2477254cc68b45a6093e3d269d
    71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Mathematical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Statistics
    76 rdf:type schema:DefinedTerm
    77 sg:person.013213143073.79 schema:affiliation Nc406e86b237e4c648119b1a03810f4b6
    78 schema:familyName Akaike
    79 schema:givenName Hirotogu
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013213143073.79
    81 rdf:type schema:Person
    82 sg:pub.10.1007/bf02479221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003034557
    83 https://doi.org/10.1007/bf02479221
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02506337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048838634
    86 https://doi.org/10.1007/bf02506337
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf02532251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001604786
    89 https://doi.org/10.1007/bf02532251
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0005-1098(72)90008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041545934
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1017/s0305004100009580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053875849
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1080/00401706.1966.10490322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058283758
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1090/s0002-9947-1943-0012401-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022628174
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1214/aoms/1177696977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398799
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1214/aoms/1177704014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400342
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1214/aoms/1177729032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401603
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1214/aoms/1177729694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026070931
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1214/aoms/1177729952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401894
    108 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...