Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

François Ollivier

ABSTRACT

Canonical bases for k-subalgeras of k[x1, …, xn] are analogs of standard bases for ideals. They form a set of generators, which allows to answer the membership problem by a reduction process. Unfortunately, they may be infinite even for finitely generated subalgeras. We redefine canonical bases, and for that we recall some properties of monoids, k-algebras of monoids and “binomial” ideals, which play an essential role in our presentation and the implementation we made in the IBM computer algebra system Scratchpad II. We complete the already known relations between standard bases and canonical bases by generalizing the notion of standard bases for ideals of any k-subalgebra admitting a finite canonical basis. We also have a way of finding a set of generators of the ideal of relations between elements of a canonical basis, which is a standard basis for some ordering. We then turn to finiteness conditions, and investigate the case of integrally closed subalgebras. We show that if some integral extension B of a subalgebra A admits a finite canonical basis, we have an algorithm to solve the membership problem for A, by computing the generalized standard basis of a B-ideal. We conjecture that any integrally closed subalgebra admits a finite canonical basis, and provide partial results. There is a simple case, but of special interest, where the complexity of computing a canonical basis is known: the case where k[f1, …, fn] = k[x1, …, xn]. We show that the canonical bases procedure give more information than previously known methods and may provide a tool for the tame generators conjecture. More... »

PAGES

379-400

References to SciGraph publications

Book

TITLE

Effective Methods in Algebraic Geometry

ISBN

978-1-4612-6761-4
978-1-4612-0441-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_25

DOI

http://dx.doi.org/10.1007/978-1-4612-0441-1_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037890672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique", 
          "id": "https://www.grid.ac/institutes/grid.10877.39", 
          "name": [
            "Laboratoire d\u2019Informatique de l\u2019X, \u00c9cole Polytechnique, F-91128, Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ollivier", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.014036151663.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036151663.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0273-0979-1982-15032-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000325773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/74540.74571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001984940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(78)90078-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006516720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0747-7171(88)80047-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008036480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3975(81)90064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016024722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(82)90048-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031151173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-15984-3_321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039672124", 
          "https://doi.org/10.1007/3-540-15984-3_321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9647-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046229791", 
          "https://doi.org/10.1007/978-1-4613-9647-5_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "Canonical bases for k-subalgeras of k[x1, \u2026, xn] are analogs of standard bases for ideals. They form a set of generators, which allows to answer the membership problem by a reduction process. Unfortunately, they may be infinite even for finitely generated subalgeras. We redefine canonical bases, and for that we recall some properties of monoids, k-algebras of monoids and \u201cbinomial\u201d ideals, which play an essential role in our presentation and the implementation we made in the IBM computer algebra system Scratchpad II. We complete the already known relations between standard bases and canonical bases by generalizing the notion of standard bases for ideals of any k-subalgebra admitting a finite canonical basis. We also have a way of finding a set of generators of the ideal of relations between elements of a canonical basis, which is a standard basis for some ordering. We then turn to finiteness conditions, and investigate the case of integrally closed subalgebras. We show that if some integral extension B of a subalgebra A admits a finite canonical basis, we have an algorithm to solve the membership problem for A, by computing the generalized standard basis of a B-ideal. We conjecture that any integrally closed subalgebra admits a finite canonical basis, and provide partial results. There is a simple case, but of special interest, where the complexity of computing a canonical basis is known: the case where k[f1, \u2026, fn] = k[x1, \u2026, xn]. We show that the canonical bases procedure give more information than previously known methods and may provide a tool for the tame generators conjecture.", 
    "editor": [
      {
        "familyName": "Mora", 
        "givenName": "Teo", 
        "type": "Person"
      }, 
      {
        "familyName": "Traverso", 
        "givenName": "Carlo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-0441-1_25", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-6761-4", 
        "978-1-4612-0441-1"
      ], 
      "name": "Effective Methods in Algebraic Geometry", 
      "type": "Book"
    }, 
    "name": "Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms", 
    "pagination": "379-400", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037890672"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-0441-1_25"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b47fdb1b1d16c1043deabfe15a19c5a9c42d4ea84416ebcc6b74798bebc2b304"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Birkh\u00e4user Boston", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-0441-1_25", 
      "https://app.dimensions.ai/details/publication/pub.1037890672"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000003.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-0441-1_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_25'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-0441-1_25 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N07a48d8614dc4684aa1ceafc5ac8c097
4 schema:citation sg:pub.10.1007/3-540-15984-3_321
5 sg:pub.10.1007/978-1-4613-9647-5_1
6 https://doi.org/10.1016/0001-8708(82)90048-2
7 https://doi.org/10.1016/0020-0190(78)90078-9
8 https://doi.org/10.1016/0304-3975(81)90064-5
9 https://doi.org/10.1016/s0747-7171(88)80047-6
10 https://doi.org/10.1090/s0273-0979-1982-15032-7
11 https://doi.org/10.1145/74540.74571
12 schema:datePublished 1991
13 schema:datePublishedReg 1991-01-01
14 schema:description Canonical bases for k-subalgeras of k[x1, …, xn] are analogs of standard bases for ideals. They form a set of generators, which allows to answer the membership problem by a reduction process. Unfortunately, they may be infinite even for finitely generated subalgeras. We redefine canonical bases, and for that we recall some properties of monoids, k-algebras of monoids and “binomial” ideals, which play an essential role in our presentation and the implementation we made in the IBM computer algebra system Scratchpad II. We complete the already known relations between standard bases and canonical bases by generalizing the notion of standard bases for ideals of any k-subalgebra admitting a finite canonical basis. We also have a way of finding a set of generators of the ideal of relations between elements of a canonical basis, which is a standard basis for some ordering. We then turn to finiteness conditions, and investigate the case of integrally closed subalgebras. We show that if some integral extension B of a subalgebra A admits a finite canonical basis, we have an algorithm to solve the membership problem for A, by computing the generalized standard basis of a B-ideal. We conjecture that any integrally closed subalgebra admits a finite canonical basis, and provide partial results. There is a simple case, but of special interest, where the complexity of computing a canonical basis is known: the case where k[f1, …, fn] = k[x1, …, xn]. We show that the canonical bases procedure give more information than previously known methods and may provide a tool for the tame generators conjecture.
15 schema:editor N1d20163dd5f6427d9c86db9f1d4f454a
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ne25aed127bf34051b6ad09bc58832d4b
20 schema:name Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms
21 schema:pagination 379-400
22 schema:productId Na89bbe0b7a37409a9ea0efa353e470ea
23 Naaa5604b6b4a42d4a2fcf91b8d4e131b
24 Nc9c30aeb400f44faa7a507b38f347183
25 schema:publisher Nf343c21ae9e747819bf1022590a89bfe
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037890672
27 https://doi.org/10.1007/978-1-4612-0441-1_25
28 schema:sdDatePublished 2019-04-16T09:15
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N7970e45e601e4056a04f9ea45f7813fd
31 schema:url https://link.springer.com/10.1007%2F978-1-4612-0441-1_25
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N07a48d8614dc4684aa1ceafc5ac8c097 rdf:first sg:person.014036151663.16
36 rdf:rest rdf:nil
37 N1d20163dd5f6427d9c86db9f1d4f454a rdf:first N9a0a5fbfc0564b04855a8e75a73430f4
38 rdf:rest N7a0706603efd4bcc99e3e2f696d5a9be
39 N7970e45e601e4056a04f9ea45f7813fd schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N7a0706603efd4bcc99e3e2f696d5a9be rdf:first Nd364af3312504b4ab5983fe45107687a
42 rdf:rest rdf:nil
43 N9a0a5fbfc0564b04855a8e75a73430f4 schema:familyName Mora
44 schema:givenName Teo
45 rdf:type schema:Person
46 Na89bbe0b7a37409a9ea0efa353e470ea schema:name dimensions_id
47 schema:value pub.1037890672
48 rdf:type schema:PropertyValue
49 Naaa5604b6b4a42d4a2fcf91b8d4e131b schema:name doi
50 schema:value 10.1007/978-1-4612-0441-1_25
51 rdf:type schema:PropertyValue
52 Nc9c30aeb400f44faa7a507b38f347183 schema:name readcube_id
53 schema:value b47fdb1b1d16c1043deabfe15a19c5a9c42d4ea84416ebcc6b74798bebc2b304
54 rdf:type schema:PropertyValue
55 Nd364af3312504b4ab5983fe45107687a schema:familyName Traverso
56 schema:givenName Carlo
57 rdf:type schema:Person
58 Ne25aed127bf34051b6ad09bc58832d4b schema:isbn 978-1-4612-0441-1
59 978-1-4612-6761-4
60 schema:name Effective Methods in Algebraic Geometry
61 rdf:type schema:Book
62 Nf343c21ae9e747819bf1022590a89bfe schema:location Boston, MA
63 schema:name Birkhäuser Boston
64 rdf:type schema:Organisation
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:person.014036151663.16 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
72 schema:familyName Ollivier
73 schema:givenName François
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036151663.16
75 rdf:type schema:Person
76 sg:pub.10.1007/3-540-15984-3_321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039672124
77 https://doi.org/10.1007/3-540-15984-3_321
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/978-1-4613-9647-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046229791
80 https://doi.org/10.1007/978-1-4613-9647-5_1
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0001-8708(82)90048-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031151173
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0020-0190(78)90078-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006516720
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0304-3975(81)90064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016024722
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/s0747-7171(88)80047-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008036480
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/s0273-0979-1982-15032-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000325773
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1145/74540.74571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001984940
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.10877.39 schema:alternateName École Polytechnique
95 schema:name Laboratoire d’Informatique de l’X, École Polytechnique, F-91128, Palaiseau Cedex, France
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...