Codes and Elliptic Curves View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

Gerard van der Geer

ABSTRACT

In this paper we discuss recent results ([1], [2], [3], [4], [5], [9]) on codes and algebraic curves. We are not concerned with algebraic geometric Goppa codes but rather with another link between coding theory and algebraic geometry. In our case the codes correspond to families of algebraic curves over a finite field, whereas Goppa codes come from a fixed algebraic curve. We use algebraic geometry to determine the weight distributions of certain codes but also we show that results from coding theory may be used to obtain results about the variation of the number of points in families of algebraic curves over a finite field. We do not assume that the reader has a knowledge of coding theory. More... »

PAGES

159-168

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_10

DOI

http://dx.doi.org/10.1007/978-1-4612-0441-1_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035766323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Geer", 
        "givenName": "Gerard", 
        "id": "sg:person.011551332252.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "In this paper we discuss recent results ([1], [2], [3], [4], [5], [9]) on codes and algebraic curves. We are not concerned with algebraic geometric Goppa codes but rather with another link between coding theory and algebraic geometry. In our case the codes correspond to families of algebraic curves over a finite field, whereas Goppa codes come from a fixed algebraic curve. We use algebraic geometry to determine the weight distributions of certain codes but also we show that results from coding theory may be used to obtain results about the variation of the number of points in families of algebraic curves over a finite field. We do not assume that the reader has a knowledge of coding theory.", 
    "editor": [
      {
        "familyName": "Mora", 
        "givenName": "Teo", 
        "type": "Person"
      }, 
      {
        "familyName": "Traverso", 
        "givenName": "Carlo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-0441-1_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-6761-4", 
        "978-1-4612-0441-1"
      ], 
      "name": "Effective Methods in Algebraic Geometry", 
      "type": "Book"
    }, 
    "keywords": [
      "algebraic curves", 
      "algebraic geometry", 
      "Goppa codes", 
      "finite field", 
      "geometric Goppa codes", 
      "elliptic curves", 
      "number of points", 
      "certain codes", 
      "recent results", 
      "theory", 
      "geometry", 
      "code", 
      "curves", 
      "field", 
      "results", 
      "point", 
      "distribution", 
      "number", 
      "family", 
      "link", 
      "cases", 
      "weight distribution", 
      "knowledge", 
      "readers", 
      "variation", 
      "paper", 
      "algebraic geometric Goppa codes"
    ], 
    "name": "Codes and Elliptic Curves", 
    "pagination": "159-168", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035766323"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-0441-1_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-0441-1_10", 
      "https://app.dimensions.ai/details/publication/pub.1035766323"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_214.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4612-0441-1_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0441-1_10'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      55 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-0441-1_10 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:08
4 anzsrc-for:0802
5 schema:author N2a78a96f29f44756a0dbc535461d2c23
6 schema:datePublished 1991
7 schema:datePublishedReg 1991-01-01
8 schema:description In this paper we discuss recent results ([1], [2], [3], [4], [5], [9]) on codes and algebraic curves. We are not concerned with algebraic geometric Goppa codes but rather with another link between coding theory and algebraic geometry. In our case the codes correspond to families of algebraic curves over a finite field, whereas Goppa codes come from a fixed algebraic curve. We use algebraic geometry to determine the weight distributions of certain codes but also we show that results from coding theory may be used to obtain results about the variation of the number of points in families of algebraic curves over a finite field. We do not assume that the reader has a knowledge of coding theory.
9 schema:editor N10b2b70e85c44ac09e00f4915d2207bf
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N2676ddb89faa4ee1af0db4687fd27592
14 schema:keywords Goppa codes
15 algebraic curves
16 algebraic geometric Goppa codes
17 algebraic geometry
18 cases
19 certain codes
20 code
21 curves
22 distribution
23 elliptic curves
24 family
25 field
26 finite field
27 geometric Goppa codes
28 geometry
29 knowledge
30 link
31 number
32 number of points
33 paper
34 point
35 readers
36 recent results
37 results
38 theory
39 variation
40 weight distribution
41 schema:name Codes and Elliptic Curves
42 schema:pagination 159-168
43 schema:productId N0e9053071087445daa2f00d62ee7d63e
44 N733236dd3f534e4e8098c63242546794
45 schema:publisher Ncfa5a63d7dc64c37a18796bf6ed3ffc1
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035766323
47 https://doi.org/10.1007/978-1-4612-0441-1_10
48 schema:sdDatePublished 2021-12-01T20:00
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N658e5127520e4c6688a765a9cc4660f0
51 schema:url https://doi.org/10.1007/978-1-4612-0441-1_10
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N0e9053071087445daa2f00d62ee7d63e schema:name dimensions_id
56 schema:value pub.1035766323
57 rdf:type schema:PropertyValue
58 N10b2b70e85c44ac09e00f4915d2207bf rdf:first N6002a935a91f4e4ea1e92e8a65ef5beb
59 rdf:rest N1532ea2438a4430d9c21754d28b519b2
60 N1532ea2438a4430d9c21754d28b519b2 rdf:first Nf9a52b3067b94bd1be9a066bf879d085
61 rdf:rest rdf:nil
62 N2676ddb89faa4ee1af0db4687fd27592 schema:isbn 978-1-4612-0441-1
63 978-1-4612-6761-4
64 schema:name Effective Methods in Algebraic Geometry
65 rdf:type schema:Book
66 N2a78a96f29f44756a0dbc535461d2c23 rdf:first sg:person.011551332252.27
67 rdf:rest rdf:nil
68 N6002a935a91f4e4ea1e92e8a65ef5beb schema:familyName Mora
69 schema:givenName Teo
70 rdf:type schema:Person
71 N658e5127520e4c6688a765a9cc4660f0 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N733236dd3f534e4e8098c63242546794 schema:name doi
74 schema:value 10.1007/978-1-4612-0441-1_10
75 rdf:type schema:PropertyValue
76 Ncfa5a63d7dc64c37a18796bf6ed3ffc1 schema:name Springer Nature
77 rdf:type schema:Organisation
78 Nf9a52b3067b94bd1be9a066bf879d085 schema:familyName Traverso
79 schema:givenName Carlo
80 rdf:type schema:Person
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
91 schema:name Computation Theory and Mathematics
92 rdf:type schema:DefinedTerm
93 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
94 schema:familyName van der Geer
95 schema:givenName Gerard
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
97 rdf:type schema:Person
98 grid-institutes:grid.7177.6 schema:alternateName Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands
99 schema:name Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...