Improvement of Photosynthetic CO2 Fixation at High Light Intensity Through Reduction of Chlorophyll Antenna Size View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

James W. Lee , Laurens Mets , Elias Greenbaum

ABSTRACT

At elevated light intensities (greater than ~200 μE/[m2·s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 μE/(m2·s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 μmol/[h·mg of chl]) than that of the wild type, DES15 (95 μmol/[h·mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency. More... »

PAGES

37-48

Book

TITLE

Biotechnology for Fuels and Chemicals

ISBN

978-1-4612-6621-1
978-1-4612-0119-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-0119-9_3

DOI

http://dx.doi.org/10.1007/978-1-4612-0119-9_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027568011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Chemical Technology Division, Oak Ridge National Laboratory, 37831-6194, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "James W.", 
        "id": "sg:person.0713074357.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713074357.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 E. 57th Street, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mets", 
        "givenName": "Laurens", 
        "id": "sg:person.01260421000.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260421000.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Chemical Technology Division, Oak Ridge National Laboratory, 37831-6194, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greenbaum", 
        "givenName": "Elias", 
        "id": "sg:person.0714621705.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714621705.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1008015224029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003009296", 
          "https://doi.org/10.1023/a:1008015224029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.6.1532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004854631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006554477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(92)81894-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006886265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007285701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(98)00296-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009937522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011327496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00003549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011952912", 
          "https://doi.org/10.1007/bf00003549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00003549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011952912", 
          "https://doi.org/10.1007/bf00003549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00080-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013916212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-8904(95)00340-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015022249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19960705)51:1<51::aid-bit6>3.0.co;2-#", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015255177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19980620)58:6<605::aid-bit6>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015906570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/kakoronbunshu.23.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019703513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.50.1.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020299120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530051591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024695498", 
          "https://doi.org/10.1007/s002530051591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(88)90504-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029992975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(88)90504-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029992975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(89)82654-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031554903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1656(95)00144-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031594469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.46.1.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033287370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00003954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034478198", 
          "https://doi.org/10.1007/bf00003954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00003954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034478198", 
          "https://doi.org/10.1007/bf00003954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pp.42.060191.001525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041664202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00083-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042087350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0922-338x(95)90613-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042143678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008076231267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042844175", 
          "https://doi.org/10.1023/a:1008076231267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2728(89)80202-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043493072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260470218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048843380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5329.1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5400.310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "At elevated light intensities (greater than ~200 \u03bcE/[m2\u00b7s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 \u03bcE/(m2\u00b7s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 \u03bcmol/[h\u00b7mg of chl]) than that of the wild type, DES15 (95 \u03bcmol/[h\u00b7mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.", 
    "editor": [
      {
        "familyName": "Finkelstein", 
        "givenName": "Mark", 
        "type": "Person"
      }, 
      {
        "familyName": "McMillan", 
        "givenName": "James D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Davison", 
        "givenName": "Brian H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-0119-9_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-6621-1", 
        "978-1-4612-0119-9"
      ], 
      "name": "Biotechnology for Fuels and Chemicals", 
      "type": "Book"
    }, 
    "name": "Improvement of Photosynthetic CO2 Fixation at High Light Intensity Through Reduction of Chlorophyll Antenna Size", 
    "pagination": "37-48", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027568011"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-0119-9_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83537a1ffadd86237c3d718629ebd337cfbce3d9943a56d6642d7fcc2d1e0edc"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-0119-9_3", 
      "https://app.dimensions.ai/details/publication/pub.1027568011"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117123_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-0119-9_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0119-9_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0119-9_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0119-9_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0119-9_3'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      55 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-0119-9_3 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N05976f0f2aeb43cb9ba193eca9982ce6
4 schema:citation sg:pub.10.1007/bf00003549
5 sg:pub.10.1007/bf00003954
6 sg:pub.10.1007/s002530051591
7 sg:pub.10.1023/a:1008015224029
8 sg:pub.10.1023/a:1008076231267
9 https://doi.org/10.1002/(sici)1097-0290(19960705)51:1<51::aid-bit6>3.0.co;2-#
10 https://doi.org/10.1002/(sici)1097-0290(19980620)58:6<605::aid-bit6>3.0.co;2-m
11 https://doi.org/10.1002/bit.260470218
12 https://doi.org/10.1016/0168-1656(95)00144-1
13 https://doi.org/10.1016/0196-8904(95)00340-1
14 https://doi.org/10.1016/0378-1119(88)90504-5
15 https://doi.org/10.1016/0922-338x(95)90613-5
16 https://doi.org/10.1016/s0005-2728(89)80202-6
17 https://doi.org/10.1016/s0006-3495(89)82654-2
18 https://doi.org/10.1016/s0006-3495(92)81894-5
19 https://doi.org/10.1016/s0009-2509(98)00296-6
20 https://doi.org/10.1016/s0168-1656(99)00079-6
21 https://doi.org/10.1016/s0168-1656(99)00080-2
22 https://doi.org/10.1016/s0168-1656(99)00081-4
23 https://doi.org/10.1016/s0168-1656(99)00083-8
24 https://doi.org/10.1016/s0168-1656(99)00084-x
25 https://doi.org/10.1073/pnas.46.1.83
26 https://doi.org/10.1073/pnas.84.6.1532
27 https://doi.org/10.1104/pp.50.1.141
28 https://doi.org/10.1126/science.277.5329.1038
29 https://doi.org/10.1126/science.283.5400.310
30 https://doi.org/10.1146/annurev.pp.42.060191.001525
31 https://doi.org/10.1252/kakoronbunshu.23.331
32 schema:datePublished 2002
33 schema:datePublishedReg 2002-01-01
34 schema:description At elevated light intensities (greater than ~200 μE/[m2·s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 μE/(m2·s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 μmol/[h·mg of chl]) than that of the wild type, DES15 (95 μmol/[h·mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.
35 schema:editor N5635a078fe534da6a8d61d98ae22b781
36 schema:genre chapter
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N1bf47cfb0d7f4e20bd985b025072adf6
40 schema:name Improvement of Photosynthetic CO2 Fixation at High Light Intensity Through Reduction of Chlorophyll Antenna Size
41 schema:pagination 37-48
42 schema:productId N52477233ea614e6586b2b1834df64dde
43 N693ff87e057041deab05c0b573e32d5c
44 Na3283b6df9cb47bf890217c3328807ac
45 schema:publisher N5701756fd3b04f98864e2c8a24f29a59
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027568011
47 https://doi.org/10.1007/978-1-4612-0119-9_3
48 schema:sdDatePublished 2019-04-16T09:30
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N22174b65ded3404a80b2ca440f1b9b12
51 schema:url https://link.springer.com/10.1007%2F978-1-4612-0119-9_3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N05976f0f2aeb43cb9ba193eca9982ce6 rdf:first sg:person.0713074357.07
56 rdf:rest Nce204facad9546a4b56739ffdd73bb95
57 N16c6d635172744869ef118c807ad09f8 schema:familyName McMillan
58 schema:givenName James D.
59 rdf:type schema:Person
60 N1bf47cfb0d7f4e20bd985b025072adf6 schema:isbn 978-1-4612-0119-9
61 978-1-4612-6621-1
62 schema:name Biotechnology for Fuels and Chemicals
63 rdf:type schema:Book
64 N22174b65ded3404a80b2ca440f1b9b12 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N52477233ea614e6586b2b1834df64dde schema:name dimensions_id
67 schema:value pub.1027568011
68 rdf:type schema:PropertyValue
69 N5635a078fe534da6a8d61d98ae22b781 rdf:first Na7e68122c0744c138367331940eb99d4
70 rdf:rest N94c8bf10e52b4d44b7b3cdca19176763
71 N5701756fd3b04f98864e2c8a24f29a59 schema:location Totowa, NJ
72 schema:name Humana Press
73 rdf:type schema:Organisation
74 N5e0bcff65ff34bb5abeb61f54994b87b schema:name Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 E. 57th Street, 60637, Chicago, IL, USA
75 rdf:type schema:Organization
76 N693ff87e057041deab05c0b573e32d5c schema:name doi
77 schema:value 10.1007/978-1-4612-0119-9_3
78 rdf:type schema:PropertyValue
79 N7d474e4c28e54d45af62733793f5b3eb schema:familyName Davison
80 schema:givenName Brian H.
81 rdf:type schema:Person
82 N94c8bf10e52b4d44b7b3cdca19176763 rdf:first N16c6d635172744869ef118c807ad09f8
83 rdf:rest N9a6d9d0dcb724bd29dab8ca7622d6422
84 N9a6d9d0dcb724bd29dab8ca7622d6422 rdf:first N7d474e4c28e54d45af62733793f5b3eb
85 rdf:rest rdf:nil
86 Na3283b6df9cb47bf890217c3328807ac schema:name readcube_id
87 schema:value 83537a1ffadd86237c3d718629ebd337cfbce3d9943a56d6642d7fcc2d1e0edc
88 rdf:type schema:PropertyValue
89 Na7e68122c0744c138367331940eb99d4 schema:familyName Finkelstein
90 schema:givenName Mark
91 rdf:type schema:Person
92 Nce204facad9546a4b56739ffdd73bb95 rdf:first sg:person.01260421000.56
93 rdf:rest Nd833d87a6d0e47bd885b9df9f68b45a8
94 Nd833d87a6d0e47bd885b9df9f68b45a8 rdf:first sg:person.0714621705.87
95 rdf:rest rdf:nil
96 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biological Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
100 schema:name Plant Biology
101 rdf:type schema:DefinedTerm
102 sg:person.01260421000.56 schema:affiliation N5e0bcff65ff34bb5abeb61f54994b87b
103 schema:familyName Mets
104 schema:givenName Laurens
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260421000.56
106 rdf:type schema:Person
107 sg:person.0713074357.07 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
108 schema:familyName Lee
109 schema:givenName James W.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713074357.07
111 rdf:type schema:Person
112 sg:person.0714621705.87 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
113 schema:familyName Greenbaum
114 schema:givenName Elias
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714621705.87
116 rdf:type schema:Person
117 sg:pub.10.1007/bf00003549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011952912
118 https://doi.org/10.1007/bf00003549
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00003954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034478198
121 https://doi.org/10.1007/bf00003954
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s002530051591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024695498
124 https://doi.org/10.1007/s002530051591
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1008015224029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003009296
127 https://doi.org/10.1023/a:1008015224029
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1008076231267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042844175
130 https://doi.org/10.1023/a:1008076231267
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/(sici)1097-0290(19960705)51:1<51::aid-bit6>3.0.co;2-# schema:sameAs https://app.dimensions.ai/details/publication/pub.1015255177
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/(sici)1097-0290(19980620)58:6<605::aid-bit6>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1015906570
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/bit.260470218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048843380
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0168-1656(95)00144-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031594469
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0196-8904(95)00340-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015022249
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0378-1119(88)90504-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029992975
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0922-338x(95)90613-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042143678
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0005-2728(89)80202-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043493072
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0006-3495(89)82654-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031554903
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0006-3495(92)81894-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006886265
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0009-2509(98)00296-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009937522
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0168-1656(99)00079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007285701
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0168-1656(99)00080-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013916212
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0168-1656(99)00081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011327496
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0168-1656(99)00083-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042087350
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0168-1656(99)00084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554477
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.46.1.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033287370
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.84.6.1532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004854631
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1104/pp.50.1.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020299120
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.277.5329.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557734
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.283.5400.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563830
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1146/annurev.pp.42.060191.001525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041664202
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1252/kakoronbunshu.23.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019703513
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
179 schema:name Chemical Technology Division, Oak Ridge National Laboratory, 37831-6194, Oak Ridge, TN, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...