Quivers, Desingularizations and Canonical Bases View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

Markus Reineke

ABSTRACT

A class of desingularizations for orbit closures of representations of Dynkin quivers is constructed, which can be viewed as a graded analogue of the Springer resolution. A stratification of the singular fibres is introduced; its geometry and combinatorics are studied. Via the Hall algebra approach, these constructions relate to bases of quantized enveloping algebras. Using Ginzburg’s theory of convolution algebras, the base change coefficients of Lusztig’s canonical basis are expressed as decomposition numbers of certain convolution algebras. More... »

PAGES

325-344

References to SciGraph publications

  • 2001-07. Feigin's map and monomial bases for quantized enveloping algebras in MATHEMATISCHE ZEITSCHRIFT
  • 1984. Tame Algebras and Integral Quadratic Forms in NONE
  • 2001-05. Normality of orbit closures for Dynkin quivers¶of type ?n in MANUSCRIPTA MATHEMATICA
  • 1983. Root systems, representations of quivers and invariant theory in INVARIANT THEORY
  • 1976-10. On the collapsing of homogeneous bundles in INVENTIONES MATHEMATICAE
  • 1981-04. p-adic analog of the kazhdan -Lusztig hypothesis in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1990-12. Hall algebras and quantum groups in INVENTIONES MATHEMATICAE
  • 1997-04. On the coloured graph structure of Lusztig's canonical basis in MATHEMATISCHE ANNALEN
  • 1981-09. The geometry of representations ofAm in MATHEMATISCHE ANNALEN
  • Book

    TITLE

    Studies in Memory of Issai Schur

    ISBN

    978-1-4612-6587-0
    978-1-4612-0045-1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4612-0045-1_12

    DOI

    http://dx.doi.org/10.1007/978-1-4612-0045-1_12

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044895871


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wuppertal", 
              "id": "https://www.grid.ac/institutes/grid.7787.f", 
              "name": [
                "Fachbereich Mathematik, Universitat Wuppertal, Gauss-Strasse 20, D-42097, Wuppertal, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reineke", 
            "givenName": "Markus", 
            "id": "sg:person.011475663622.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475663622.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/pl00005871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000989121", 
              "https://doi.org/10.1007/pl00005871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-4049(00)00008-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002137721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0063236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007262423", 
              "https://doi.org/10.1007/bfb0063236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1996.0053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009494585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01679706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011362061", 
              "https://doi.org/10.1007/bf01679706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01679706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011362061", 
              "https://doi.org/10.1007/bf01679706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-1990-1035415-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027548652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002080050058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029400299", 
              "https://doi.org/10.1007/s002080050058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01390321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035411981", 
              "https://doi.org/10.1007/bf01390321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0072870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036377907", 
              "https://doi.org/10.1007/bfb0072870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0072870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036377907", 
              "https://doi.org/10.1007/bfb0072870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040141253", 
              "https://doi.org/10.1007/bf01231516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040141253", 
              "https://doi.org/10.1007/bf01231516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00004885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040949013", 
              "https://doi.org/10.1007/pl00004885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01082279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044861591", 
              "https://doi.org/10.1007/bf01082279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01082279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044861591", 
              "https://doi.org/10.1007/bf01082279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-1991-1088333-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053506412"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003", 
        "datePublishedReg": "2003-01-01", 
        "description": "A class of desingularizations for orbit closures of representations of Dynkin quivers is constructed, which can be viewed as a graded analogue of the Springer resolution. A stratification of the singular fibres is introduced; its geometry and combinatorics are studied. Via the Hall algebra approach, these constructions relate to bases of quantized enveloping algebras. Using Ginzburg\u2019s theory of convolution algebras, the base change coefficients of Lusztig\u2019s canonical basis are expressed as decomposition numbers of certain convolution algebras.", 
        "editor": [
          {
            "familyName": "Joseph", 
            "givenName": "Anthony", 
            "type": "Person"
          }, 
          {
            "familyName": "Melnikov", 
            "givenName": "Anna", 
            "type": "Person"
          }, 
          {
            "familyName": "Rentschler", 
            "givenName": "Rudolf", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4612-0045-1_12", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-1-4612-6587-0", 
            "978-1-4612-0045-1"
          ], 
          "name": "Studies in Memory of Issai Schur", 
          "type": "Book"
        }, 
        "name": "Quivers, Desingularizations and Canonical Bases", 
        "pagination": "325-344", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044895871"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4612-0045-1_12"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d5da4a561cc0ca6b3d91b4d168755e24c7a5290490a70d63a6f47edbc1c291e9"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston, MA", 
          "name": "Birkh\u00e4user Boston", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4612-0045-1_12", 
          "https://app.dimensions.ai/details/publication/pub.1044895871"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-1-4612-0045-1_12"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0045-1_12'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0045-1_12'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0045-1_12'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-0045-1_12'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4612-0045-1_12 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3171e8c5e20a469eba954f8b8936e542
    4 schema:citation sg:pub.10.1007/bf01082279
    5 sg:pub.10.1007/bf01231516
    6 sg:pub.10.1007/bf01390321
    7 sg:pub.10.1007/bf01679706
    8 sg:pub.10.1007/bfb0063236
    9 sg:pub.10.1007/bfb0072870
    10 sg:pub.10.1007/pl00004885
    11 sg:pub.10.1007/pl00005871
    12 sg:pub.10.1007/s002080050058
    13 https://doi.org/10.1006/aima.1996.0053
    14 https://doi.org/10.1016/s0022-4049(00)00008-6
    15 https://doi.org/10.1090/s0894-0347-1990-1035415-6
    16 https://doi.org/10.1090/s0894-0347-1991-1088333-2
    17 schema:datePublished 2003
    18 schema:datePublishedReg 2003-01-01
    19 schema:description A class of desingularizations for orbit closures of representations of Dynkin quivers is constructed, which can be viewed as a graded analogue of the Springer resolution. A stratification of the singular fibres is introduced; its geometry and combinatorics are studied. Via the Hall algebra approach, these constructions relate to bases of quantized enveloping algebras. Using Ginzburg’s theory of convolution algebras, the base change coefficients of Lusztig’s canonical basis are expressed as decomposition numbers of certain convolution algebras.
    20 schema:editor N00534ba4209b477ab8384948e0ec01b6
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf Nffe2d2b1637e403c90fb6892d642d788
    25 schema:name Quivers, Desingularizations and Canonical Bases
    26 schema:pagination 325-344
    27 schema:productId Nc1077c173bf045ca90ccbfcd6d3e4fb5
    28 Ne91929ccb6384115b59d0f68b2aebd8a
    29 Ned5225c8fd2e41589fb1cf35e42f14a2
    30 schema:publisher N9b9150def27f404ea0bb3e311da74871
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044895871
    32 https://doi.org/10.1007/978-1-4612-0045-1_12
    33 schema:sdDatePublished 2019-04-16T09:03
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nb4ed481e675140349362538ef9cca983
    36 schema:url https://link.springer.com/10.1007%2F978-1-4612-0045-1_12
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N00534ba4209b477ab8384948e0ec01b6 rdf:first N44521533757b44f19a6890c2b4af47c7
    41 rdf:rest Nb97364ebc571436c8fe6bc6f308f3b69
    42 N3171e8c5e20a469eba954f8b8936e542 rdf:first sg:person.011475663622.09
    43 rdf:rest rdf:nil
    44 N44521533757b44f19a6890c2b4af47c7 schema:familyName Joseph
    45 schema:givenName Anthony
    46 rdf:type schema:Person
    47 N77b02141fc894cea86c003f249b1fad0 schema:familyName Rentschler
    48 schema:givenName Rudolf
    49 rdf:type schema:Person
    50 N9b9150def27f404ea0bb3e311da74871 schema:location Boston, MA
    51 schema:name Birkhäuser Boston
    52 rdf:type schema:Organisation
    53 Nb4ed481e675140349362538ef9cca983 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Nb97364ebc571436c8fe6bc6f308f3b69 rdf:first Nbfefd9c43946402fabe2a4fd6324e6bc
    56 rdf:rest Nbd7837a42d694ab8b8d6aeae0e109618
    57 Nbd7837a42d694ab8b8d6aeae0e109618 rdf:first N77b02141fc894cea86c003f249b1fad0
    58 rdf:rest rdf:nil
    59 Nbfefd9c43946402fabe2a4fd6324e6bc schema:familyName Melnikov
    60 schema:givenName Anna
    61 rdf:type schema:Person
    62 Nc1077c173bf045ca90ccbfcd6d3e4fb5 schema:name doi
    63 schema:value 10.1007/978-1-4612-0045-1_12
    64 rdf:type schema:PropertyValue
    65 Ne91929ccb6384115b59d0f68b2aebd8a schema:name dimensions_id
    66 schema:value pub.1044895871
    67 rdf:type schema:PropertyValue
    68 Ned5225c8fd2e41589fb1cf35e42f14a2 schema:name readcube_id
    69 schema:value d5da4a561cc0ca6b3d91b4d168755e24c7a5290490a70d63a6f47edbc1c291e9
    70 rdf:type schema:PropertyValue
    71 Nffe2d2b1637e403c90fb6892d642d788 schema:isbn 978-1-4612-0045-1
    72 978-1-4612-6587-0
    73 schema:name Studies in Memory of Issai Schur
    74 rdf:type schema:Book
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:person.011475663622.09 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
    82 schema:familyName Reineke
    83 schema:givenName Markus
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475663622.09
    85 rdf:type schema:Person
    86 sg:pub.10.1007/bf01082279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044861591
    87 https://doi.org/10.1007/bf01082279
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf01231516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040141253
    90 https://doi.org/10.1007/bf01231516
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01390321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035411981
    93 https://doi.org/10.1007/bf01390321
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf01679706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011362061
    96 https://doi.org/10.1007/bf01679706
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bfb0063236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007262423
    99 https://doi.org/10.1007/bfb0063236
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bfb0072870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036377907
    102 https://doi.org/10.1007/bfb0072870
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/pl00004885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040949013
    105 https://doi.org/10.1007/pl00004885
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/pl00005871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000989121
    108 https://doi.org/10.1007/pl00005871
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s002080050058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029400299
    111 https://doi.org/10.1007/s002080050058
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1006/aima.1996.0053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009494585
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0022-4049(00)00008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002137721
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1090/s0894-0347-1990-1035415-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027548652
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1090/s0894-0347-1991-1088333-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053506412
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.7787.f schema:alternateName University of Wuppertal
    122 schema:name Fachbereich Mathematik, Universitat Wuppertal, Gauss-Strasse 20, D-42097, Wuppertal, Germany
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...