Veronese and Segre varieties

Ontology type: schema:Chapter

Chapter Info

DATE

2016-02-04

AUTHORS ABSTRACT

The Veronese variety of all quadrics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$PG(n, K), n \geq 1$$ \end{document}, is the variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{V} = \left\{{\bf P}(x_0^2,x_1^2,\ldots,x_n^2,x_0x_1,\ldots,x_0x_n,x_1x_2,\ldots,x_1x_n,\ldots,x_{n-1}x_n)| {\bf P}(X) \mathrm{is\; a\; point\; of\; PG(\it n,K)}\right\}$$ \end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$PG( N, K)$$ \end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N \;=\;n(n+3)/2$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$X\;=\;(x_0,x_1,\ldots,x_n)$$ \end{document}; then V is a variety of dimension n. More... »

PAGES

143-221

Book

TITLE

General Galois Geometries

ISBN

978-1-4471-6788-4
978-1-4471-6790-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_4

DOI

http://dx.doi.org/10.1007/978-1-4471-6790-7_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026604729

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Sussex, Brighton, UK",
"id": "http://www.grid.ac/institutes/grid.12082.39",
"name": [
"Department of Mathematics, University of Sussex, Brighton, UK"
],
"type": "Organization"
},
"familyName": "Hirschfeld",
"givenName": "J. W. P.",
"id": "sg:person.012124570705.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Ghent University, Gent, Belgium",
"id": "http://www.grid.ac/institutes/grid.5342.0",
"name": [
"Department of Mathematics, Ghent University, Gent, Belgium"
],
"type": "Organization"
},
"familyName": "Thas",
"givenName": "J. A.",
"id": "sg:person.012237233043.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237233043.76"
],
"type": "Person"
}
],
"datePublished": "2016-02-04",
"datePublishedReg": "2016-02-04",
"description": "The Veronese variety of all quadrics of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$PG(n, K), n \\geq 1$$\n\\end{document}, is the variety \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\mathcal{V} = \\left\\{{\\bf P}(x_0^2,x_1^2,\\ldots,x_n^2,x_0x_1,\\ldots,x_0x_n,x_1x_2,\\ldots,x_1x_n,\\ldots,x_{n-1}x_n)| {\\bf P}(X) \\mathrm{is\\; a\\; point\\; of\\; PG(\\it n,K)}\\right\\}$$\n\\end{document} of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$PG( N, K)$$\n\\end{document} with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$N \\;=\\;n(n+3)/2$$\n\\end{document}, where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$X\\;=\\;(x_0,x_1,\\ldots,x_n)$$\n\\end{document}; then V is a variety of dimension n.",
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4471-6790-7_4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4471-6788-4",
"978-1-4471-6790-7"
],
"name": "General Galois Geometries",
"type": "Book"
},
"keywords": [
"variety",
"pg",
"Segre varieties",
"n.",
"dimension n.",
"Veronese variety"
],
"name": "Veronese and Segre varieties",
"pagination": "143-221",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026604729"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4471-6790-7_4"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4471-6790-7_4",
"https://app.dimensions.ai/details/publication/pub.1026604729"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-01-01T19:23",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_409.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4471-6790-7_4"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_4'

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      22 PREDICATES      31 URIs      24 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4471-6790-7_4 schema:about anzsrc-for:17
2 anzsrc-for:1701
4 schema:datePublished 2016-02-04
5 schema:datePublishedReg 2016-02-04
6 schema:description The Veronese variety of all quadrics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$PG(n, K), n \geq 1$$ \end{document}, is the variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{V} = \left\{{\bf P}(x_0^2,x_1^2,\ldots,x_n^2,x_0x_1,\ldots,x_0x_n,x_1x_2,\ldots,x_1x_n,\ldots,x_{n-1}x_n)| {\bf P}(X) \mathrm{is\; a\; point\; of\; PG(\it n,K)}\right\}$$ \end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$PG( N, K)$$ \end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$N \;=\;n(n+3)/2$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$X\;=\;(x_0,x_1,\ldots,x_n)$$ \end{document}; then V is a variety of dimension n.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nafde052ff66746289c4816ca65cbff29
11 schema:keywords Segre varieties
12 Veronese variety
13 dimension n.
14 n.
15 pg
17 variety
18 schema:name Veronese and Segre varieties
19 schema:pagination 143-221
20 schema:productId N439e0fd8949d4e95b28f3e9f2150c287
21 N9b96929e85d34b3c8958655313286e5e
22 schema:publisher N34e99279d67741bca7e8ce9ec35e48b7
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026604729
24 https://doi.org/10.1007/978-1-4471-6790-7_4
25 schema:sdDatePublished 2022-01-01T19:23
27 schema:sdPublisher Nfd3d4135eff24f018e99af31dd4b6374
28 schema:url https://doi.org/10.1007/978-1-4471-6790-7_4
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N34e99279d67741bca7e8ce9ec35e48b7 schema:name Springer Nature
33 rdf:type schema:Organisation
34 N439e0fd8949d4e95b28f3e9f2150c287 schema:name dimensions_id
35 schema:value pub.1026604729
36 rdf:type schema:PropertyValue
37 N9b96929e85d34b3c8958655313286e5e schema:name doi
38 schema:value 10.1007/978-1-4471-6790-7_4
39 rdf:type schema:PropertyValue
40 N9f124329a47e452e9f150229f1b95b8f rdf:first sg:person.012237233043.76
41 rdf:rest rdf:nil
42 Nafde052ff66746289c4816ca65cbff29 schema:isbn 978-1-4471-6788-4
43 978-1-4471-6790-7
44 schema:name General Galois Geometries
45 rdf:type schema:Book
46 Nccbdf29716334fcead07367d525eb9bf rdf:first sg:person.012124570705.64
47 rdf:rest N9f124329a47e452e9f150229f1b95b8f
48 Nfd3d4135eff24f018e99af31dd4b6374 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
51 schema:name Psychology and Cognitive Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
54 schema:name Psychology
55 rdf:type schema:DefinedTerm
56 sg:person.012124570705.64 schema:affiliation grid-institutes:grid.12082.39
57 schema:familyName Hirschfeld
58 schema:givenName J. W. P.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
60 rdf:type schema:Person
61 sg:person.012237233043.76 schema:affiliation grid-institutes:grid.5342.0
62 schema:familyName Thas
63 schema:givenName J. A.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237233043.76
65 rdf:type schema:Person
66 grid-institutes:grid.12082.39 schema:alternateName Department of Mathematics, University of Sussex, Brighton, UK
67 schema:name Department of Mathematics, University of Sussex, Brighton, UK
68 rdf:type schema:Organization
69 grid-institutes:grid.5342.0 schema:alternateName Department of Mathematics, Ghent University, Gent, Belgium
70 schema:name Department of Mathematics, Ghent University, Gent, Belgium
71 rdf:type schema:Organization

Preview window. Press ESC to close (or click here)

...