Hermitian varieties View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-02-04

AUTHORS

J. W. P. Hirschfeld , J. A. Thas

ABSTRACT

In \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\rm F}_{q}={\rm GF}_(q)$$ \end{document}, q square, the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x\mapsto x^{\sqrt{q}}=\bar{x}$$ \end{document} is an involutory automorphism. For a matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ A = ({a_{ij}}) $$ \end{document}, write \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \bar{A} = ({\bar{a}_{ij}}) $$ \end{document}. More... »

PAGES

57-97

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_2

DOI

http://dx.doi.org/10.1007/978-1-4471-6790-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006540893


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Sussex, Brighton, UK", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "Department of Mathematics, University of Sussex, Brighton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirschfeld", 
        "givenName": "J. W. P.", 
        "id": "sg:person.012124570705.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Ghent University, Gent, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Department of Mathematics, Ghent University, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thas", 
        "givenName": "J. A.", 
        "id": "sg:person.012237233043.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237233043.76"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-02-04", 
    "datePublishedReg": "2016-02-04", 
    "description": "In \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\rm F}_{q}={\\rm GF}_(q)$$\n\\end{document}, q square, the map \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$x\\mapsto x^{\\sqrt{q}}=\\bar{x}$$\n\\end{document} is an involutory automorphism. For a matrix \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$ A = ({a_{ij}}) $$\n\\end{document}, write \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$ \\bar{A} = ({\\bar{a}_{ij}}) $$\n\\end{document}.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4471-6790-7_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4471-6788-4", 
        "978-1-4471-6790-7"
      ], 
      "name": "General Galois Geometries", 
      "type": "Book"
    }, 
    "keywords": [
      "variety", 
      "maps", 
      "squares", 
      "matrix", 
      "Hermitian variety", 
      "involutory automorphism", 
      "automorphisms"
    ], 
    "name": "Hermitian varieties", 
    "pagination": "57-97", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006540893"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4471-6790-7_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4471-6790-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1006540893"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_58.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4471-6790-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-6790-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      22 PREDICATES      31 URIs      24 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4471-6790-7_2 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Na908c4f34abb45599cc536a05cf21e36
4 schema:datePublished 2016-02-04
5 schema:datePublishedReg 2016-02-04
6 schema:description In \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\rm F}_{q}={\rm GF}_(q)$$ \end{document}, q square, the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x\mapsto x^{\sqrt{q}}=\bar{x}$$ \end{document} is an involutory automorphism. For a matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ A = ({a_{ij}}) $$ \end{document}, write \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \bar{A} = ({\bar{a}_{ij}}) $$ \end{document}.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Neea3651bee2444b6ae97305123c5140f
11 schema:keywords Hermitian variety
12 automorphisms
13 involutory automorphism
14 maps
15 matrix
16 squares
17 variety
18 schema:name Hermitian varieties
19 schema:pagination 57-97
20 schema:productId N7f6ba33ae2c84c30a6c560d063a5c4b9
21 Nfd815d8f19904a09b521a57d355f5dec
22 schema:publisher Ndaf634b8f41e44e8916db90f2c518e86
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006540893
24 https://doi.org/10.1007/978-1-4471-6790-7_2
25 schema:sdDatePublished 2022-01-01T19:27
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N3d198835970140b2ba18cd08149c0eb3
28 schema:url https://doi.org/10.1007/978-1-4471-6790-7_2
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N3d198835970140b2ba18cd08149c0eb3 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N7f6ba33ae2c84c30a6c560d063a5c4b9 schema:name dimensions_id
35 schema:value pub.1006540893
36 rdf:type schema:PropertyValue
37 N96629117a8234edbac83c1bbf8722979 rdf:first sg:person.012237233043.76
38 rdf:rest rdf:nil
39 Na908c4f34abb45599cc536a05cf21e36 rdf:first sg:person.012124570705.64
40 rdf:rest N96629117a8234edbac83c1bbf8722979
41 Ndaf634b8f41e44e8916db90f2c518e86 schema:name Springer Nature
42 rdf:type schema:Organisation
43 Neea3651bee2444b6ae97305123c5140f schema:isbn 978-1-4471-6788-4
44 978-1-4471-6790-7
45 schema:name General Galois Geometries
46 rdf:type schema:Book
47 Nfd815d8f19904a09b521a57d355f5dec schema:name doi
48 schema:value 10.1007/978-1-4471-6790-7_2
49 rdf:type schema:PropertyValue
50 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
51 schema:name Medical and Health Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
54 schema:name Public Health and Health Services
55 rdf:type schema:DefinedTerm
56 sg:person.012124570705.64 schema:affiliation grid-institutes:grid.12082.39
57 schema:familyName Hirschfeld
58 schema:givenName J. W. P.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
60 rdf:type schema:Person
61 sg:person.012237233043.76 schema:affiliation grid-institutes:grid.5342.0
62 schema:familyName Thas
63 schema:givenName J. A.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237233043.76
65 rdf:type schema:Person
66 grid-institutes:grid.12082.39 schema:alternateName Department of Mathematics, University of Sussex, Brighton, UK
67 schema:name Department of Mathematics, University of Sussex, Brighton, UK
68 rdf:type schema:Organization
69 grid-institutes:grid.5342.0 schema:alternateName Department of Mathematics, Ghent University, Gent, Belgium
70 schema:name Department of Mathematics, Ghent University, Gent, Belgium
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...