Diagnosis and Automata View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Eric Fabre

ABSTRACT

Fault diagnosis and state estimation are two central and typical problems one may face in the monitoring of discrete-event systems. This chapter examines these two problems in the simple setting of automata. It is first explained that diagnosis and state estimation are two related problems. Then one describes the construction of an observer (resp. a diagnoser) both for standard and for probabilistic automata. A section is dedicated to diagnosability issues, that is the ability to detect the occurrence of an unobservable fault event after a bounded number of observations following that fault. The chapter then proposes an opening to the case of distributed systems, made of several interacting components, but still assuming a sequential semantics (i.e. ignoring the possible parallelism of some events). One first presents a modularity property on observers and diagnosers of distributed systems, in a rather specific case. The general case is then examined, and a distributed procedure is described to recover the runs of a distributed system that can explain a set of distributed observations collected in this system. Finally, the chapter closes on a discussion about the interest of true concurrency semantics for the monitoring of large distributed systems. More... »

PAGES

85-106

References to SciGraph publications

Book

TITLE

Control of Discrete-Event Systems

ISBN

978-1-4471-4275-1
978-1-4471-4276-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4471-4276-8_5

DOI

http://dx.doi.org/10.1007/978-1-4471-4276-8_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011238631


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "INRIA Rennes Bretagne Atlantique, Campus de Beaulieu, 35042\u00a0Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fabre", 
        "givenName": "Eric", 
        "id": "sg:person.011362250353.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362250353.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-01492-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011042045", 
          "https://doi.org/10.1007/978-3-642-01492-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10626-005-5238-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022113780", 
          "https://doi.org/10.1007/s10626-005-5238-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10626-005-5238-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022113780", 
          "https://doi.org/10.1007/s10626-005-5238-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11682462_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034484968", 
          "https://doi.org/10.1007/11682462_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11682462_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034484968", 
          "https://doi.org/10.1007/11682462_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10626-007-0016-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040863856", 
          "https://doi.org/10.1007/s10626-007-0016-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10626-007-0016-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040863856", 
          "https://doi.org/10.1007/s10626-007-0016-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3182/20100830-3-de-4013.00039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043094580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3182/20100830-3-de-4013.00025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051270339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.412626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061244618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2002.802763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2003.811249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2005.844722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539798346676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129054102000996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062896396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wodes.2006.1678440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093684062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wodes.2008.4605977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094019325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2009.5400084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095651725"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Fault diagnosis and state estimation are two central and typical problems one may face in the monitoring of discrete-event systems. This chapter examines these two problems in the simple setting of automata. It is first explained that diagnosis and state estimation are two related problems. Then one describes the construction of an observer (resp. a diagnoser) both for standard and for probabilistic automata. A section is dedicated to diagnosability issues, that is the ability to detect the occurrence of an unobservable fault event after a bounded number of observations following that fault. The chapter then proposes an opening to the case of distributed systems, made of several interacting components, but still assuming a sequential semantics (i.e. ignoring the possible parallelism of some events). One first presents a modularity property on observers and diagnosers of distributed systems, in a rather specific case. The general case is then examined, and a distributed procedure is described to recover the runs of a distributed system that can explain a set of distributed observations collected in this system. Finally, the chapter closes on a discussion about the interest of true concurrency semantics for the monitoring of large distributed systems.", 
    "editor": [
      {
        "familyName": "Seatzu", 
        "givenName": "Carla", 
        "type": "Person"
      }, 
      {
        "familyName": "Silva", 
        "givenName": "Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "van Schuppen", 
        "givenName": "Jan H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4471-4276-8_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4471-4275-1", 
        "978-1-4471-4276-8"
      ], 
      "name": "Control of Discrete-Event Systems", 
      "type": "Book"
    }, 
    "name": "Diagnosis and Automata", 
    "pagination": "85-106", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4471-4276-8_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "358bc59eb5da39079d003219e3a5f765d0227f4a0343fe45f215acc97d4fe8c0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011238631"
        ]
      }
    ], 
    "publisher": {
      "location": "London", 
      "name": "Springer London", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4471-4276-8_5", 
      "https://app.dimensions.ai/details/publication/pub.1011238631"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000250.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4471-4276-8_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-4276-8_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-4276-8_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-4276-8_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-4276-8_5'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4471-4276-8_5 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N5353949291e8401e867f6f2e5c777f95
4 schema:citation sg:pub.10.1007/11682462_32
5 sg:pub.10.1007/978-3-642-01492-5_6
6 sg:pub.10.1007/s10626-005-5238-5
7 sg:pub.10.1007/s10626-007-0016-1
8 https://doi.org/10.1109/9.412626
9 https://doi.org/10.1109/cdc.2009.5400084
10 https://doi.org/10.1109/tac.2002.802763
11 https://doi.org/10.1109/tac.2003.811249
12 https://doi.org/10.1109/tac.2005.844722
13 https://doi.org/10.1109/wodes.2006.1678440
14 https://doi.org/10.1109/wodes.2008.4605977
15 https://doi.org/10.1137/s0097539798346676
16 https://doi.org/10.1142/s0129054102000996
17 https://doi.org/10.3182/20100830-3-de-4013.00025
18 https://doi.org/10.3182/20100830-3-de-4013.00039
19 schema:datePublished 2013
20 schema:datePublishedReg 2013-01-01
21 schema:description Fault diagnosis and state estimation are two central and typical problems one may face in the monitoring of discrete-event systems. This chapter examines these two problems in the simple setting of automata. It is first explained that diagnosis and state estimation are two related problems. Then one describes the construction of an observer (resp. a diagnoser) both for standard and for probabilistic automata. A section is dedicated to diagnosability issues, that is the ability to detect the occurrence of an unobservable fault event after a bounded number of observations following that fault. The chapter then proposes an opening to the case of distributed systems, made of several interacting components, but still assuming a sequential semantics (i.e. ignoring the possible parallelism of some events). One first presents a modularity property on observers and diagnosers of distributed systems, in a rather specific case. The general case is then examined, and a distributed procedure is described to recover the runs of a distributed system that can explain a set of distributed observations collected in this system. Finally, the chapter closes on a discussion about the interest of true concurrency semantics for the monitoring of large distributed systems.
22 schema:editor N4060dcf5a5e540aa8e9de6b194129b61
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Nf1c03350b9f7457aabd76772b8947a95
27 schema:name Diagnosis and Automata
28 schema:pagination 85-106
29 schema:productId N1d57ef03e28a41f7ad24c8c1e677408b
30 N303e373c82f04cd3bb7b2563e686f335
31 N306840ade9c2427881b98e0a794e54c0
32 schema:publisher Nbeac030e069f48419d8e36084cd63e77
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011238631
34 https://doi.org/10.1007/978-1-4471-4276-8_5
35 schema:sdDatePublished 2019-04-15T13:26
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N3cecc38ba8eb4b199ac34622ded81857
38 schema:url http://link.springer.com/10.1007/978-1-4471-4276-8_5
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N08aec6f5d088416facf84740a68fd625 rdf:first N40eb2c33917d4e79bc288360b4a8c735
43 rdf:rest rdf:nil
44 N1d57ef03e28a41f7ad24c8c1e677408b schema:name doi
45 schema:value 10.1007/978-1-4471-4276-8_5
46 rdf:type schema:PropertyValue
47 N303e373c82f04cd3bb7b2563e686f335 schema:name readcube_id
48 schema:value 358bc59eb5da39079d003219e3a5f765d0227f4a0343fe45f215acc97d4fe8c0
49 rdf:type schema:PropertyValue
50 N306840ade9c2427881b98e0a794e54c0 schema:name dimensions_id
51 schema:value pub.1011238631
52 rdf:type schema:PropertyValue
53 N3cecc38ba8eb4b199ac34622ded81857 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N4060dcf5a5e540aa8e9de6b194129b61 rdf:first N6ca2a1a1f56c4644bf3feb871f145eba
56 rdf:rest Nc2070bd4f154451a8b3b89cffb8e37a5
57 N40eb2c33917d4e79bc288360b4a8c735 schema:familyName van Schuppen
58 schema:givenName Jan H.
59 rdf:type schema:Person
60 N5353949291e8401e867f6f2e5c777f95 rdf:first sg:person.011362250353.22
61 rdf:rest rdf:nil
62 N6ca2a1a1f56c4644bf3feb871f145eba schema:familyName Seatzu
63 schema:givenName Carla
64 rdf:type schema:Person
65 Nbeac030e069f48419d8e36084cd63e77 schema:location London
66 schema:name Springer London
67 rdf:type schema:Organisation
68 Nc2070bd4f154451a8b3b89cffb8e37a5 rdf:first Nf3c9439a95774a81848bffafe2bfe8a2
69 rdf:rest N08aec6f5d088416facf84740a68fd625
70 Nf1c03350b9f7457aabd76772b8947a95 schema:isbn 978-1-4471-4275-1
71 978-1-4471-4276-8
72 schema:name Control of Discrete-Event Systems
73 rdf:type schema:Book
74 Nf3c9439a95774a81848bffafe2bfe8a2 schema:familyName Silva
75 schema:givenName Manuel
76 rdf:type schema:Person
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
81 schema:name Electrical and Electronic Engineering
82 rdf:type schema:DefinedTerm
83 sg:person.011362250353.22 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
84 schema:familyName Fabre
85 schema:givenName Eric
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362250353.22
87 rdf:type schema:Person
88 sg:pub.10.1007/11682462_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034484968
89 https://doi.org/10.1007/11682462_32
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-642-01492-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011042045
92 https://doi.org/10.1007/978-3-642-01492-5_6
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s10626-005-5238-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022113780
95 https://doi.org/10.1007/s10626-005-5238-5
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10626-007-0016-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040863856
98 https://doi.org/10.1007/s10626-007-0016-1
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/9.412626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061244618
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/cdc.2009.5400084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095651725
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/tac.2002.802763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475089
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/tac.2003.811249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475291
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/tac.2005.844722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475878
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/wodes.2006.1678440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093684062
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/wodes.2008.4605977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094019325
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1137/s0097539798346676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880287
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1142/s0129054102000996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062896396
117 rdf:type schema:CreativeWork
118 https://doi.org/10.3182/20100830-3-de-4013.00025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051270339
119 rdf:type schema:CreativeWork
120 https://doi.org/10.3182/20100830-3-de-4013.00039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043094580
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.410368.8 schema:alternateName University of Rennes 1
123 schema:name INRIA Rennes Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes cedex, France
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...