A Learning Rule for Self-organization of The Velocity Selectivity of Directionally Selective Cells View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

Ken-ichiro Miura , Koji Kurata , Takashi Nagano

ABSTRACT

We first present mathematical analysis about the relation between the parameters and the behavior of the basic module in the neural network model for viSual motion detection proposed by one of the authors[1]. Based on the analytical results, a learning rule is proposed that can develop the velocity selectivity of directionally selective cells. The proposed learning rule is simple and plausible in the actual nervous system in that it is described only with local information. Numerical simulation results showed that the basic module learned self-organizingly to acquire the selectivity for velocity of an input stimulus. More... »

PAGES

50-53

Book

TITLE

ICANN ’94

ISBN

978-3-540-19887-1
978-1-4471-2097-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11

DOI

http://dx.doi.org/10.1007/978-1-4471-2097-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007430950


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo, 184, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Ken-ichiro", 
        "id": "sg:person.01135752122.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135752122.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo, 184, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurata", 
        "givenName": "Koji", 
        "id": "sg:person.01204065322.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204065322.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo, 184, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagano", 
        "givenName": "Takashi", 
        "id": "sg:person.01034442456.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00224859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043342679", 
          "https://doi.org/10.1007/bf00224859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043342679", 
          "https://doi.org/10.1007/bf00224859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(76)90313-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045872409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(76)90313-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045872409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1983.49.5.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081999661"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "We first present mathematical analysis about the relation between the parameters and the behavior of the basic module in the neural network model for viSual motion detection proposed by one of the authors[1]. Based on the analytical results, a learning rule is proposed that can develop the velocity selectivity of directionally selective cells. The proposed learning rule is simple and plausible in the actual nervous system in that it is described only with local information. Numerical simulation results showed that the basic module learned self-organizingly to acquire the selectivity for velocity of an input stimulus.", 
    "editor": [
      {
        "familyName": "Marinaro", 
        "givenName": "Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Morasso", 
        "givenName": "Pietro G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4471-2097-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-19887-1", 
        "978-1-4471-2097-1"
      ], 
      "name": "ICANN \u201994", 
      "type": "Book"
    }, 
    "name": "A Learning Rule for Self-organization of The Velocity Selectivity of Directionally Selective Cells", 
    "pagination": "50-53", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4471-2097-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "236528c31a01bcb908e44cf3861799d7a34ecae62b42d997e184a35a683c57a3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007430950"
        ]
      }
    ], 
    "publisher": {
      "location": "London", 
      "name": "Springer London", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4471-2097-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1007430950"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000573.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4471-2097-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4471-2097-1_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na07f6f512bb245e591eb9b2426d19ac9
4 schema:citation sg:pub.10.1007/bf00224859
5 https://doi.org/10.1016/0006-8993(76)90313-9
6 https://doi.org/10.1152/jn.1983.49.5.1127
7 schema:datePublished 1994
8 schema:datePublishedReg 1994-01-01
9 schema:description We first present mathematical analysis about the relation between the parameters and the behavior of the basic module in the neural network model for viSual motion detection proposed by one of the authors[1]. Based on the analytical results, a learning rule is proposed that can develop the velocity selectivity of directionally selective cells. The proposed learning rule is simple and plausible in the actual nervous system in that it is described only with local information. Numerical simulation results showed that the basic module learned self-organizingly to acquire the selectivity for velocity of an input stimulus.
10 schema:editor Nac8f06319567400cab9ca4b27fede6ac
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N04a1c3966736473595fd60899dec0c4f
15 schema:name A Learning Rule for Self-organization of The Velocity Selectivity of Directionally Selective Cells
16 schema:pagination 50-53
17 schema:productId N059c68f81fb54c209eb58a209fe3d4ce
18 N308212dd7e944c5cb6927ce1cffd08c0
19 N3b3d207fdbce4619a961851607edd29c
20 schema:publisher N4776ccd94a37431c8b1fa9bee9e88462
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007430950
22 https://doi.org/10.1007/978-1-4471-2097-1_11
23 schema:sdDatePublished 2019-04-15T11:10
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Nd9d0db7a574e44e2875ffbde095dd7d2
26 schema:url http://link.springer.com/10.1007/978-1-4471-2097-1_11
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N04a1c3966736473595fd60899dec0c4f schema:isbn 978-1-4471-2097-1
31 978-3-540-19887-1
32 schema:name ICANN ’94
33 rdf:type schema:Book
34 N059c68f81fb54c209eb58a209fe3d4ce schema:name doi
35 schema:value 10.1007/978-1-4471-2097-1_11
36 rdf:type schema:PropertyValue
37 N308212dd7e944c5cb6927ce1cffd08c0 schema:name dimensions_id
38 schema:value pub.1007430950
39 rdf:type schema:PropertyValue
40 N3b3d207fdbce4619a961851607edd29c schema:name readcube_id
41 schema:value 236528c31a01bcb908e44cf3861799d7a34ecae62b42d997e184a35a683c57a3
42 rdf:type schema:PropertyValue
43 N4776ccd94a37431c8b1fa9bee9e88462 schema:location London
44 schema:name Springer London
45 rdf:type schema:Organisation
46 N556fa1b8c55a4cd28f8ff55944ee82a5 rdf:first N7e34b5b0593f43b7ac9695cd8aa8c84b
47 rdf:rest rdf:nil
48 N628ded005c42469583b58bcf63575509 rdf:first sg:person.01204065322.14
49 rdf:rest N899b778caff74e0a906c9787ef13b902
50 N7e34b5b0593f43b7ac9695cd8aa8c84b schema:familyName Morasso
51 schema:givenName Pietro G.
52 rdf:type schema:Person
53 N899b778caff74e0a906c9787ef13b902 rdf:first sg:person.01034442456.31
54 rdf:rest rdf:nil
55 Na07f6f512bb245e591eb9b2426d19ac9 rdf:first sg:person.01135752122.35
56 rdf:rest N628ded005c42469583b58bcf63575509
57 Nac8f06319567400cab9ca4b27fede6ac rdf:first Nb487a27139d141519de654478137a544
58 rdf:rest N556fa1b8c55a4cd28f8ff55944ee82a5
59 Nb487a27139d141519de654478137a544 schema:familyName Marinaro
60 schema:givenName Maria
61 rdf:type schema:Person
62 Nd9d0db7a574e44e2875ffbde095dd7d2 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:person.01034442456.31 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
71 schema:familyName Nagano
72 schema:givenName Takashi
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31
74 rdf:type schema:Person
75 sg:person.01135752122.35 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
76 schema:familyName Miura
77 schema:givenName Ken-ichiro
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135752122.35
79 rdf:type schema:Person
80 sg:person.01204065322.14 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
81 schema:familyName Kurata
82 schema:givenName Koji
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204065322.14
84 rdf:type schema:Person
85 sg:pub.10.1007/bf00224859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043342679
86 https://doi.org/10.1007/bf00224859
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0006-8993(76)90313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045872409
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1152/jn.1983.49.5.1127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081999661
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
93 schema:name College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo, 184, Japan
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...