Ontology type: schema:Chapter
1994
AUTHORSKen-ichiro Miura , Koji Kurata , Takashi Nagano
ABSTRACTWe first present mathematical analysis about the relation between the parameters and the behavior of the basic module in the neural network model for viSual motion detection proposed by one of the authors[1]. Based on the analytical results, a learning rule is proposed that can develop the velocity selectivity of directionally selective cells. The proposed learning rule is simple and plausible in the actual nervous system in that it is described only with local information. Numerical simulation results showed that the basic module learned self-organizingly to acquire the selectivity for velocity of an input stimulus. More... »
PAGES50-53
ICANN ’94
ISBN
978-3-540-19887-1
978-1-4471-2097-1
http://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11
DOIhttp://dx.doi.org/10.1007/978-1-4471-2097-1_11
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007430950
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Hosei University",
"id": "https://www.grid.ac/institutes/grid.257114.4",
"name": [
"College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo, 184, Japan"
],
"type": "Organization"
},
"familyName": "Miura",
"givenName": "Ken-ichiro",
"id": "sg:person.01135752122.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135752122.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hosei University",
"id": "https://www.grid.ac/institutes/grid.257114.4",
"name": [
"College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo, 184, Japan"
],
"type": "Organization"
},
"familyName": "Kurata",
"givenName": "Koji",
"id": "sg:person.01204065322.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204065322.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hosei University",
"id": "https://www.grid.ac/institutes/grid.257114.4",
"name": [
"College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo, 184, Japan"
],
"type": "Organization"
},
"familyName": "Nagano",
"givenName": "Takashi",
"id": "sg:person.01034442456.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00224859",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043342679",
"https://doi.org/10.1007/bf00224859"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00224859",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043342679",
"https://doi.org/10.1007/bf00224859"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0006-8993(76)90313-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045872409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0006-8993(76)90313-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045872409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1152/jn.1983.49.5.1127",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1081999661"
],
"type": "CreativeWork"
}
],
"datePublished": "1994",
"datePublishedReg": "1994-01-01",
"description": "We first present mathematical analysis about the relation between the parameters and the behavior of the basic module in the neural network model for viSual motion detection proposed by one of the authors[1]. Based on the analytical results, a learning rule is proposed that can develop the velocity selectivity of directionally selective cells. The proposed learning rule is simple and plausible in the actual nervous system in that it is described only with local information. Numerical simulation results showed that the basic module learned self-organizingly to acquire the selectivity for velocity of an input stimulus.",
"editor": [
{
"familyName": "Marinaro",
"givenName": "Maria",
"type": "Person"
},
{
"familyName": "Morasso",
"givenName": "Pietro G.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4471-2097-1_11",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-19887-1",
"978-1-4471-2097-1"
],
"name": "ICANN \u201994",
"type": "Book"
},
"name": "A Learning Rule for Self-organization of The Velocity Selectivity of Directionally Selective Cells",
"pagination": "50-53",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4471-2097-1_11"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"236528c31a01bcb908e44cf3861799d7a34ecae62b42d997e184a35a683c57a3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007430950"
]
}
],
"publisher": {
"location": "London",
"name": "Springer London",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4471-2097-1_11",
"https://app.dimensions.ai/details/publication/pub.1007430950"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T11:10",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000573.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-1-4471-2097-1_11"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-2097-1_11'
This table displays all metadata directly associated to this object as RDF triples.
94 TRIPLES
23 PREDICATES
30 URIs
20 LITERALS
8 BLANK NODES