Black-Box Software Sensor Design for Environmental Monitoring View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

S. Canu , Y. Grandvalet , M. H. Masson

ABSTRACT

Software sensor design consists in building a model to estimate an unknown quantity, with error bars, using other available measurements. In the environmental domain, due to a lack of physical model, non-linearities, and unknown time dependencies, black-box modelling is required. An application in river water quality monitoring illustrates a neural network based methodology. All stages of the method are described from data cleaning, and model selection, predictor estimation and prediction validity assessment. The originality of the approach is that it provides automatically an estimation of inputs relevance in merging the input selection and prediction estimation steps. More... »

PAGES

803-808

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124

DOI

http://dx.doi.org/10.1007/978-1-4471-1599-1_124

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028738457


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "PSI, INSA de Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.435013.0", 
          "name": [
            "PSI, INSA de Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canu", 
        "givenName": "S.", 
        "id": "sg:person.010537763601.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537763601.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France", 
          "id": "http://www.grid.ac/institutes/grid.462261.5", 
          "name": [
            "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandvalet", 
        "givenName": "Y.", 
        "id": "sg:person.015255215731.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France", 
          "id": "http://www.grid.ac/institutes/grid.462261.5", 
          "name": [
            "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masson", 
        "givenName": "M. H.", 
        "id": "sg:person.07464635153.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464635153.74"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Software sensor design consists in building a model to estimate an unknown quantity, with error bars, using other available measurements. In the environmental domain, due to a lack of physical model, non-linearities, and unknown time dependencies, black-box modelling is required. An application in river water quality monitoring illustrates a neural network based methodology. All stages of the method are described from data cleaning, and model selection, predictor estimation and prediction validity assessment. The originality of the approach is that it provides automatically an estimation of inputs relevance in merging the input selection and prediction estimation steps.", 
    "editor": [
      {
        "familyName": "Niklasson", 
        "givenName": "Lars", 
        "type": "Person"
      }, 
      {
        "familyName": "Bod\u00e9n", 
        "givenName": "Mikael", 
        "type": "Person"
      }, 
      {
        "familyName": "Ziemke", 
        "givenName": "Tom", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4471-1599-1_124", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-76263-8", 
        "978-1-4471-1599-1"
      ], 
      "name": "ICANN 98", 
      "type": "Book"
    }, 
    "keywords": [
      "Software sensor design", 
      "input relevance", 
      "data cleaning", 
      "neural network", 
      "black-box modelling", 
      "input selection", 
      "predictor estimation", 
      "estimation step", 
      "environmental monitoring", 
      "model selection", 
      "quality monitoring", 
      "river water quality monitoring", 
      "water quality monitoring", 
      "sensor design", 
      "network", 
      "design", 
      "estimation", 
      "selection", 
      "time dependency", 
      "monitoring", 
      "physical model", 
      "model", 
      "applications", 
      "dependency", 
      "methodology", 
      "domain", 
      "available measurements", 
      "modelling", 
      "environmental domains", 
      "originality", 
      "step", 
      "method", 
      "unknown quantities", 
      "error bars", 
      "cleaning", 
      "lack", 
      "validity assessment", 
      "relevance", 
      "stage", 
      "bar", 
      "quantity", 
      "assessment", 
      "measurements", 
      "approach"
    ], 
    "name": "Black-Box Software Sensor Design for Environmental Monitoring", 
    "pagination": "803-808", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028738457"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4471-1599-1_124"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4471-1599-1_124", 
      "https://app.dimensions.ai/details/publication/pub.1028738457"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_338.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4471-1599-1_124"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4471-1599-1_124 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd5e441e8d25743ad9ea63a158bcbfde5
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description Software sensor design consists in building a model to estimate an unknown quantity, with error bars, using other available measurements. In the environmental domain, due to a lack of physical model, non-linearities, and unknown time dependencies, black-box modelling is required. An application in river water quality monitoring illustrates a neural network based methodology. All stages of the method are described from data cleaning, and model selection, predictor estimation and prediction validity assessment. The originality of the approach is that it provides automatically an estimation of inputs relevance in merging the input selection and prediction estimation steps.
7 schema:editor N3d997b9404e440cc93b8d5c7730bb77d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3d7ebca4c8e34ba58faf8f8d6c0b0e9d
12 schema:keywords Software sensor design
13 applications
14 approach
15 assessment
16 available measurements
17 bar
18 black-box modelling
19 cleaning
20 data cleaning
21 dependency
22 design
23 domain
24 environmental domains
25 environmental monitoring
26 error bars
27 estimation
28 estimation step
29 input relevance
30 input selection
31 lack
32 measurements
33 method
34 methodology
35 model
36 model selection
37 modelling
38 monitoring
39 network
40 neural network
41 originality
42 physical model
43 predictor estimation
44 quality monitoring
45 quantity
46 relevance
47 river water quality monitoring
48 selection
49 sensor design
50 stage
51 step
52 time dependency
53 unknown quantities
54 validity assessment
55 water quality monitoring
56 schema:name Black-Box Software Sensor Design for Environmental Monitoring
57 schema:pagination 803-808
58 schema:productId N5ddb68eccf9845e4b378a8a32a51a047
59 Naf030de8d7e848738895184405f35cb8
60 schema:publisher N50cb80dac69541f09e16229825a29e92
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028738457
62 https://doi.org/10.1007/978-1-4471-1599-1_124
63 schema:sdDatePublished 2022-05-20T07:46
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nc9380026db9a4ba78cdd9126cad68615
66 schema:url https://doi.org/10.1007/978-1-4471-1599-1_124
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N07092023b01344a89186576ecaba3c2c rdf:first N490a57f6defe4900a524d9a417914d85
71 rdf:rest rdf:nil
72 N3d7ebca4c8e34ba58faf8f8d6c0b0e9d schema:isbn 978-1-4471-1599-1
73 978-3-540-76263-8
74 schema:name ICANN 98
75 rdf:type schema:Book
76 N3d997b9404e440cc93b8d5c7730bb77d rdf:first Nd5d38626ec5b4cf3ad50bbc3f81fc089
77 rdf:rest Na18a34c5de8f4023ba1e664a59b43ffc
78 N490a57f6defe4900a524d9a417914d85 schema:familyName Ziemke
79 schema:givenName Tom
80 rdf:type schema:Person
81 N4de952429f604952ab6cde7c87e9bfc3 rdf:first sg:person.015255215731.52
82 rdf:rest Ned3ca00949224c5d9c2fde0a88527c76
83 N50cb80dac69541f09e16229825a29e92 schema:name Springer Nature
84 rdf:type schema:Organisation
85 N5ddb68eccf9845e4b378a8a32a51a047 schema:name doi
86 schema:value 10.1007/978-1-4471-1599-1_124
87 rdf:type schema:PropertyValue
88 Na18a34c5de8f4023ba1e664a59b43ffc rdf:first Nca74b1d8d721464780d8e79520714574
89 rdf:rest N07092023b01344a89186576ecaba3c2c
90 Naf030de8d7e848738895184405f35cb8 schema:name dimensions_id
91 schema:value pub.1028738457
92 rdf:type schema:PropertyValue
93 Nc9380026db9a4ba78cdd9126cad68615 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nca74b1d8d721464780d8e79520714574 schema:familyName Bodén
96 schema:givenName Mikael
97 rdf:type schema:Person
98 Nd5d38626ec5b4cf3ad50bbc3f81fc089 schema:familyName Niklasson
99 schema:givenName Lars
100 rdf:type schema:Person
101 Nd5e441e8d25743ad9ea63a158bcbfde5 rdf:first sg:person.010537763601.46
102 rdf:rest N4de952429f604952ab6cde7c87e9bfc3
103 Ned3ca00949224c5d9c2fde0a88527c76 rdf:first sg:person.07464635153.74
104 rdf:rest rdf:nil
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:person.010537763601.46 schema:affiliation grid-institutes:grid.435013.0
112 schema:familyName Canu
113 schema:givenName S.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537763601.46
115 rdf:type schema:Person
116 sg:person.015255215731.52 schema:affiliation grid-institutes:grid.462261.5
117 schema:familyName Grandvalet
118 schema:givenName Y.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52
120 rdf:type schema:Person
121 sg:person.07464635153.74 schema:affiliation grid-institutes:grid.462261.5
122 schema:familyName Masson
123 schema:givenName M. H.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464635153.74
125 rdf:type schema:Person
126 grid-institutes:grid.435013.0 schema:alternateName PSI, INSA de Rouen, France
127 schema:name PSI, INSA de Rouen, France
128 rdf:type schema:Organization
129 grid-institutes:grid.462261.5 schema:alternateName HEUDIASYC, UMR CRNS 6599, Université de Technologie de Compiègne, France
130 schema:name HEUDIASYC, UMR CRNS 6599, Université de Technologie de Compiègne, France
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...