Black-Box Software Sensor Design for Environmental Monitoring View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

S. Canu , Y. Grandvalet , M. H. Masson

ABSTRACT

Software sensor design consists in building a model to estimate an unknown quantity, with error bars, using other available measurements. In the environmental domain, due to a lack of physical model, non-linearities, and unknown time dependencies, black-box modelling is required. An application in river water quality monitoring illustrates a neural network based methodology. All stages of the method are described from data cleaning, and model selection, predictor estimation and prediction validity assessment. The originality of the approach is that it provides automatically an estimation of inputs relevance in merging the input selection and prediction estimation steps. More... »

PAGES

803-808

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124

DOI

http://dx.doi.org/10.1007/978-1-4471-1599-1_124

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028738457


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "PSI, INSA de Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.435013.0", 
          "name": [
            "PSI, INSA de Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canu", 
        "givenName": "S.", 
        "id": "sg:person.010537763601.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537763601.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France", 
          "id": "http://www.grid.ac/institutes/grid.462261.5", 
          "name": [
            "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandvalet", 
        "givenName": "Y.", 
        "id": "sg:person.015255215731.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France", 
          "id": "http://www.grid.ac/institutes/grid.462261.5", 
          "name": [
            "HEUDIASYC, UMR CRNS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masson", 
        "givenName": "M. H.", 
        "id": "sg:person.07464635153.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464635153.74"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Software sensor design consists in building a model to estimate an unknown quantity, with error bars, using other available measurements. In the environmental domain, due to a lack of physical model, non-linearities, and unknown time dependencies, black-box modelling is required. An application in river water quality monitoring illustrates a neural network based methodology. All stages of the method are described from data cleaning, and model selection, predictor estimation and prediction validity assessment. The originality of the approach is that it provides automatically an estimation of inputs relevance in merging the input selection and prediction estimation steps.", 
    "editor": [
      {
        "familyName": "Niklasson", 
        "givenName": "Lars", 
        "type": "Person"
      }, 
      {
        "familyName": "Bod\u00e9n", 
        "givenName": "Mikael", 
        "type": "Person"
      }, 
      {
        "familyName": "Ziemke", 
        "givenName": "Tom", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4471-1599-1_124", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-76263-8", 
        "978-1-4471-1599-1"
      ], 
      "name": "ICANN 98", 
      "type": "Book"
    }, 
    "keywords": [
      "Software sensor design", 
      "black-box modelling", 
      "input relevance", 
      "neural network", 
      "data cleaning", 
      "input selection", 
      "predictor estimation", 
      "estimation step", 
      "model selection", 
      "environmental monitoring", 
      "quality monitoring", 
      "sensor design", 
      "river water quality monitoring", 
      "water quality monitoring", 
      "network", 
      "estimation", 
      "design", 
      "physical model", 
      "selection", 
      "available measurements", 
      "monitoring", 
      "time dependency", 
      "applications", 
      "model", 
      "methodology", 
      "dependency", 
      "domain", 
      "environmental domains", 
      "modelling", 
      "originality", 
      "step", 
      "method", 
      "unknown quantities", 
      "error bars", 
      "lack", 
      "cleaning", 
      "relevance", 
      "validity assessment", 
      "stage", 
      "quantity", 
      "bar", 
      "assessment", 
      "measurements", 
      "approach", 
      "unknown time dependencies", 
      "prediction validity assessment", 
      "prediction estimation steps", 
      "Black-Box Software Sensor Design"
    ], 
    "name": "Black-Box Software Sensor Design for Environmental Monitoring", 
    "pagination": "803-808", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028738457"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4471-1599-1_124"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4471-1599-1_124", 
      "https://app.dimensions.ai/details/publication/pub.1028738457"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_126.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4471-1599-1_124"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-1599-1_124'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4471-1599-1_124 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N00a002072a9f4e25a27dce678b0f81f4
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description Software sensor design consists in building a model to estimate an unknown quantity, with error bars, using other available measurements. In the environmental domain, due to a lack of physical model, non-linearities, and unknown time dependencies, black-box modelling is required. An application in river water quality monitoring illustrates a neural network based methodology. All stages of the method are described from data cleaning, and model selection, predictor estimation and prediction validity assessment. The originality of the approach is that it provides automatically an estimation of inputs relevance in merging the input selection and prediction estimation steps.
7 schema:editor Na23419877585479d99bcb5d541ec4e73
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2772ddb196ab4d8288ea5fec9c5c0459
12 schema:keywords Black-Box Software Sensor Design
13 Software sensor design
14 applications
15 approach
16 assessment
17 available measurements
18 bar
19 black-box modelling
20 cleaning
21 data cleaning
22 dependency
23 design
24 domain
25 environmental domains
26 environmental monitoring
27 error bars
28 estimation
29 estimation step
30 input relevance
31 input selection
32 lack
33 measurements
34 method
35 methodology
36 model
37 model selection
38 modelling
39 monitoring
40 network
41 neural network
42 originality
43 physical model
44 prediction estimation steps
45 prediction validity assessment
46 predictor estimation
47 quality monitoring
48 quantity
49 relevance
50 river water quality monitoring
51 selection
52 sensor design
53 stage
54 step
55 time dependency
56 unknown quantities
57 unknown time dependencies
58 validity assessment
59 water quality monitoring
60 schema:name Black-Box Software Sensor Design for Environmental Monitoring
61 schema:pagination 803-808
62 schema:productId N35b67b0ea8e8444e8fe75fbb9e9efad1
63 N4d085fca224a421686901e285f1af6ca
64 schema:publisher N43fe2be107394b18bd707a54de0cbfa4
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028738457
66 https://doi.org/10.1007/978-1-4471-1599-1_124
67 schema:sdDatePublished 2022-01-01T19:07
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N253005da21f249e69296ca67ed029359
70 schema:url https://doi.org/10.1007/978-1-4471-1599-1_124
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N00a002072a9f4e25a27dce678b0f81f4 rdf:first sg:person.010537763601.46
75 rdf:rest N142501d7c03f41f7b01044b7cd3ed14e
76 N142501d7c03f41f7b01044b7cd3ed14e rdf:first sg:person.015255215731.52
77 rdf:rest Ne4077df7431942e5bc51f66643522b31
78 N205575c343d840b69e767864333083fb rdf:first Neb789d416e414225adfd22b937b94103
79 rdf:rest rdf:nil
80 N253005da21f249e69296ca67ed029359 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N2772ddb196ab4d8288ea5fec9c5c0459 schema:isbn 978-1-4471-1599-1
83 978-3-540-76263-8
84 schema:name ICANN 98
85 rdf:type schema:Book
86 N35b67b0ea8e8444e8fe75fbb9e9efad1 schema:name dimensions_id
87 schema:value pub.1028738457
88 rdf:type schema:PropertyValue
89 N43fe2be107394b18bd707a54de0cbfa4 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N4d085fca224a421686901e285f1af6ca schema:name doi
92 schema:value 10.1007/978-1-4471-1599-1_124
93 rdf:type schema:PropertyValue
94 N56ec7cfeba844fb0956ae0157d097b52 rdf:first Nc48b3d5af9dc4b31b15938fcd51d76a8
95 rdf:rest N205575c343d840b69e767864333083fb
96 N64cedef2882846eba22c71966726774d schema:familyName Niklasson
97 schema:givenName Lars
98 rdf:type schema:Person
99 Na23419877585479d99bcb5d541ec4e73 rdf:first N64cedef2882846eba22c71966726774d
100 rdf:rest N56ec7cfeba844fb0956ae0157d097b52
101 Nc48b3d5af9dc4b31b15938fcd51d76a8 schema:familyName Bodén
102 schema:givenName Mikael
103 rdf:type schema:Person
104 Ne4077df7431942e5bc51f66643522b31 rdf:first sg:person.07464635153.74
105 rdf:rest rdf:nil
106 Neb789d416e414225adfd22b937b94103 schema:familyName Ziemke
107 schema:givenName Tom
108 rdf:type schema:Person
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:person.010537763601.46 schema:affiliation grid-institutes:grid.435013.0
116 schema:familyName Canu
117 schema:givenName S.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537763601.46
119 rdf:type schema:Person
120 sg:person.015255215731.52 schema:affiliation grid-institutes:grid.462261.5
121 schema:familyName Grandvalet
122 schema:givenName Y.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52
124 rdf:type schema:Person
125 sg:person.07464635153.74 schema:affiliation grid-institutes:grid.462261.5
126 schema:familyName Masson
127 schema:givenName M. H.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464635153.74
129 rdf:type schema:Person
130 grid-institutes:grid.435013.0 schema:alternateName PSI, INSA de Rouen, France
131 schema:name PSI, INSA de Rouen, France
132 rdf:type schema:Organization
133 grid-institutes:grid.462261.5 schema:alternateName HEUDIASYC, UMR CRNS 6599, Université de Technologie de Compiègne, France
134 schema:name HEUDIASYC, UMR CRNS 6599, Université de Technologie de Compiègne, France
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...