Gas-assisted Injection Molding Optimization with M.O.G.A. View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Federico Urban , Carlo Poloni

ABSTRACT

This paper presents the optimization of injection molding techniques carried out through the parameterization of the process variables and an intensive use of multi-objective genetic algorithms. Starting from a simple case of injection molding, in order to set up the evaluation criteria, several output variables have been checked to measure the improvements achieved in the molded part. The flow analysis of the resin shot during the filling phase, is initially, focused on velocity and thermal distribution to prevent defects due to non-uniform thermo-fluid dynamic situations. Afterwards, taking into account a part molded with the G.A.I.M. technique, the optimization issues have been concentrated on the gas bubble guidance into the part to achieve a deeper penetration into rib-gas channels and, at the same time, to avoid undesirable penetration into thin-thickness areas. More... »

PAGES

149-161

Book

TITLE

Optimization in Industry

ISBN

978-1-85233-534-2
978-1-4471-0675-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4471-0675-3_13

DOI

http://dx.doi.org/10.1007/978-1-4471-0675-3_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018724310


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Department of Energetics, University of Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Urban", 
        "givenName": "Federico", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Department of Energetics, University of Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poloni", 
        "givenName": "Carlo", 
        "id": "sg:person.013417222033.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "This paper presents the optimization of injection molding techniques carried out through the parameterization of the process variables and an intensive use of multi-objective genetic algorithms. Starting from a simple case of injection molding, in order to set up the evaluation criteria, several output variables have been checked to measure the improvements achieved in the molded part. The flow analysis of the resin shot during the filling phase, is initially, focused on velocity and thermal distribution to prevent defects due to non-uniform thermo-fluid dynamic situations. Afterwards, taking into account a part molded with the G.A.I.M. technique, the optimization issues have been concentrated on the gas bubble guidance into the part to achieve a deeper penetration into rib-gas channels and, at the same time, to avoid undesirable penetration into thin-thickness areas.", 
    "editor": [
      {
        "familyName": "Parmee", 
        "givenName": "Ian C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hajela", 
        "givenName": "Prabhat", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4471-0675-3_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-85233-534-2", 
        "978-1-4471-0675-3"
      ], 
      "name": "Optimization in Industry", 
      "type": "Book"
    }, 
    "name": "Gas-assisted Injection Molding Optimization with M.O.G.A.", 
    "pagination": "149-161", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018724310"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4471-0675-3_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "59370fd5154e31af728e8437f6bec6da16d3378ffc0d8fb588884fce31c1ad15"
        ]
      }
    ], 
    "publisher": {
      "location": "London", 
      "name": "Springer London", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4471-0675-3_13", 
      "https://app.dimensions.ai/details/publication/pub.1018724310"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4471-0675-3_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0675-3_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0675-3_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0675-3_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0675-3_13'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4471-0675-3_13 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N6d0d2d2981a4467a8f7486a3a1d68639
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description This paper presents the optimization of injection molding techniques carried out through the parameterization of the process variables and an intensive use of multi-objective genetic algorithms. Starting from a simple case of injection molding, in order to set up the evaluation criteria, several output variables have been checked to measure the improvements achieved in the molded part. The flow analysis of the resin shot during the filling phase, is initially, focused on velocity and thermal distribution to prevent defects due to non-uniform thermo-fluid dynamic situations. Afterwards, taking into account a part molded with the G.A.I.M. technique, the optimization issues have been concentrated on the gas bubble guidance into the part to achieve a deeper penetration into rib-gas channels and, at the same time, to avoid undesirable penetration into thin-thickness areas.
7 schema:editor N2811c0dff4d64196ad25ae72ce271e55
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbf4fd499d4324faab71a131d6d1cd008
12 schema:name Gas-assisted Injection Molding Optimization with M.O.G.A.
13 schema:pagination 149-161
14 schema:productId N4e939de28b6f4d2c8dd1661c47a9b97f
15 Nb45b2912583f4971b2c55c0477448a6d
16 Nd1b8a4066650430991cb4003f9d6b39f
17 schema:publisher N8c63e987930b4db682ff1cda0ada4dad
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018724310
19 https://doi.org/10.1007/978-1-4471-0675-3_13
20 schema:sdDatePublished 2019-04-16T09:04
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nc751eb60e3464d458468592b096420fc
23 schema:url https://link.springer.com/10.1007%2F978-1-4471-0675-3_13
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N18625f3065b54cc39232035e40019f95 schema:familyName Parmee
28 schema:givenName Ian C.
29 rdf:type schema:Person
30 N2811c0dff4d64196ad25ae72ce271e55 rdf:first N18625f3065b54cc39232035e40019f95
31 rdf:rest N4e8f6054808a4ddbaf3724201831949c
32 N4229f2cc61b74dea8f4abfb97900d0b8 schema:familyName Hajela
33 schema:givenName Prabhat
34 rdf:type schema:Person
35 N4e8f6054808a4ddbaf3724201831949c rdf:first N4229f2cc61b74dea8f4abfb97900d0b8
36 rdf:rest rdf:nil
37 N4e939de28b6f4d2c8dd1661c47a9b97f schema:name dimensions_id
38 schema:value pub.1018724310
39 rdf:type schema:PropertyValue
40 N6d0d2d2981a4467a8f7486a3a1d68639 rdf:first N700d086455fa45809c4970028b5a83a2
41 rdf:rest N90b90bc7f2e6484ca93df39251f3e0ef
42 N700d086455fa45809c4970028b5a83a2 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
43 schema:familyName Urban
44 schema:givenName Federico
45 rdf:type schema:Person
46 N8c63e987930b4db682ff1cda0ada4dad schema:location London
47 schema:name Springer London
48 rdf:type schema:Organisation
49 N90b90bc7f2e6484ca93df39251f3e0ef rdf:first sg:person.013417222033.24
50 rdf:rest rdf:nil
51 Nb45b2912583f4971b2c55c0477448a6d schema:name doi
52 schema:value 10.1007/978-1-4471-0675-3_13
53 rdf:type schema:PropertyValue
54 Nbf4fd499d4324faab71a131d6d1cd008 schema:isbn 978-1-4471-0675-3
55 978-1-85233-534-2
56 schema:name Optimization in Industry
57 rdf:type schema:Book
58 Nc751eb60e3464d458468592b096420fc schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd1b8a4066650430991cb4003f9d6b39f schema:name readcube_id
61 schema:value 59370fd5154e31af728e8437f6bec6da16d3378ffc0d8fb588884fce31c1ad15
62 rdf:type schema:PropertyValue
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
67 schema:name Interdisciplinary Engineering
68 rdf:type schema:DefinedTerm
69 sg:person.013417222033.24 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
70 schema:familyName Poloni
71 schema:givenName Carlo
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24
73 rdf:type schema:Person
74 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
75 schema:name Department of Energetics, University of Trieste, Italy
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...