SAT: A Programming Methodology with Skeletons and Collective Operations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Sergei Gorlatch

ABSTRACT

Today, conditions for the development of parallel and distributed systems would appear to be ideal. On the one hand, the demand for such systems is strong and growing steadily. Traditional supercomputing applications, Grand Challenges, require the solution of increasingly large problems, with new areas added recently, e.g. research on the human genome. The rapid growth of the Internet has given rise to geographically distributed, networked supercomputers (Grids) and to new classes of distributed commercial applications with parallelism on both the server and client side. On the other hand, bigger and more powerful systems are being built every year. Microprocessors are rapidly becoming faster and cheaper, enabling more processors to be connected in one system. New networking hardware with smaller latency and greater bandwidth is improving systems’ communication performance. Several levels of parallelism are available to the user: within a processor, among several processors in an SMP or a cluster, as well as parallelism among remote machines cooperating via the Internet. More... »

PAGES

29-63

References to SciGraph publications

  • 1989. Lectures on Constructive Functional Programming in CONSTRUCTIVE METHODS IN COMPUTING SCIENCE
  • 1999. Experimental results about MPI collective communication operations in HIGH-PERFORMANCE COMPUTING AND NETWORKING
  • 1999. Single-Message vs. Batch Communication in ALGORITHMS FOR PARALLEL PROCESSING
  • 1991. Functional programming with bananas, lenses, envelopes and barbed wire in FUNCTIONAL PROGRAMMING LANGUAGES AND COMPUTER ARCHITECTURE
  • 2003-04-18. Skeletons and Transformations in an Integrated Parallel Programming Environment* in PARALLEL COMPUTING TECHNOLOGIES
  • Book

    TITLE

    Patterns and Skeletons for Parallel and Distributed Computing

    ISBN

    978-1-85233-506-9
    978-1-4471-0097-3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4471-0097-3_2

    DOI

    http://dx.doi.org/10.1007/978-1-4471-0097-3_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025959239


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computer Software", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Gorlatch", 
            "givenName": "Sergei", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-48387-x_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007386405", 
              "https://doi.org/10.1007/3-540-48387-x_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48387-x_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007386405", 
              "https://doi.org/10.1007/3-540-48387-x_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/197320.197356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007737646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1516-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007902651", 
              "https://doi.org/10.1007/978-1-4612-1516-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1516-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007902651", 
              "https://doi.org/10.1007/978-1-4612-1516-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-444-88071-0.50023-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024474679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-74884-4_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030317655", 
              "https://doi.org/10.1007/978-3-642-74884-4_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-6423(97)00014-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040022135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jpdc.1994.1091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041014201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0100638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042106632", 
              "https://doi.org/10.1007/bfb0100638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/spe.4380240703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047877878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jpdc.1995.1089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048020272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/362929.362947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048027451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3540543961_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051539717", 
              "https://doi.org/10.1007/3540543961_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/355592.365646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053696262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/12.42122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061088168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/32.842952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061154599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129626498000456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062908059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2000.846026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093448052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sc.2000.10024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093928674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipps.1999.760522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093961638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511526626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098786523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/301104.301116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098892278"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003", 
        "datePublishedReg": "2003-01-01", 
        "description": "Today, conditions for the development of parallel and distributed systems would appear to be ideal. On the one hand, the demand for such systems is strong and growing steadily. Traditional supercomputing applications, Grand Challenges, require the solution of increasingly large problems, with new areas added recently, e.g. research on the human genome. The rapid growth of the Internet has given rise to geographically distributed, networked supercomputers (Grids) and to new classes of distributed commercial applications with parallelism on both the server and client side. On the other hand, bigger and more powerful systems are being built every year. Microprocessors are rapidly becoming faster and cheaper, enabling more processors to be connected in one system. New networking hardware with smaller latency and greater bandwidth is improving systems\u2019 communication performance. Several levels of parallelism are available to the user: within a processor, among several processors in an SMP or a cluster, as well as parallelism among remote machines cooperating via the Internet.", 
        "editor": [
          {
            "familyName": "Rabhi", 
            "givenName": "Fethi A.", 
            "type": "Person"
          }, 
          {
            "familyName": "Gorlatch", 
            "givenName": "Sergei", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4471-0097-3_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-85233-506-9", 
            "978-1-4471-0097-3"
          ], 
          "name": "Patterns and Skeletons for Parallel and Distributed Computing", 
          "type": "Book"
        }, 
        "name": "SAT: A Programming Methodology with Skeletons and Collective Operations", 
        "pagination": "29-63", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025959239"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4471-0097-3_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7bab7b657a632b30c69b2e4add3175be43c0fee9c8a17aca4b30410fe1216cf9"
            ]
          }
        ], 
        "publisher": {
          "location": "London", 
          "name": "Springer London", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4471-0097-3_2", 
          "https://app.dimensions.ai/details/publication/pub.1025959239"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112060_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-1-4471-0097-3_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0097-3_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0097-3_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0097-3_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4471-0097-3_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4471-0097-3_2 schema:about anzsrc-for:08
    2 anzsrc-for:0803
    3 schema:author N47e605a0bad3468b8c7b2bee30f134b1
    4 schema:citation sg:pub.10.1007/3-540-48387-x_2
    5 sg:pub.10.1007/3540543961_7
    6 sg:pub.10.1007/978-1-4612-1516-5_3
    7 sg:pub.10.1007/978-3-642-74884-4_5
    8 sg:pub.10.1007/bfb0100638
    9 https://doi.org/10.1002/spe.4380240703
    10 https://doi.org/10.1006/jpdc.1994.1091
    11 https://doi.org/10.1006/jpdc.1995.1089
    12 https://doi.org/10.1016/b978-0-444-88071-0.50023-0
    13 https://doi.org/10.1016/s0167-6423(97)00014-2
    14 https://doi.org/10.1017/cbo9780511526626
    15 https://doi.org/10.1109/12.42122
    16 https://doi.org/10.1109/32.842952
    17 https://doi.org/10.1109/ipdps.2000.846026
    18 https://doi.org/10.1109/ipps.1999.760522
    19 https://doi.org/10.1109/sc.2000.10024
    20 https://doi.org/10.1142/s0129626498000456
    21 https://doi.org/10.1145/197320.197356
    22 https://doi.org/10.1145/301104.301116
    23 https://doi.org/10.1145/355592.365646
    24 https://doi.org/10.1145/362929.362947
    25 schema:datePublished 2003
    26 schema:datePublishedReg 2003-01-01
    27 schema:description Today, conditions for the development of parallel and distributed systems would appear to be ideal. On the one hand, the demand for such systems is strong and growing steadily. Traditional supercomputing applications, Grand Challenges, require the solution of increasingly large problems, with new areas added recently, e.g. research on the human genome. The rapid growth of the Internet has given rise to geographically distributed, networked supercomputers (Grids) and to new classes of distributed commercial applications with parallelism on both the server and client side. On the other hand, bigger and more powerful systems are being built every year. Microprocessors are rapidly becoming faster and cheaper, enabling more processors to be connected in one system. New networking hardware with smaller latency and greater bandwidth is improving systems’ communication performance. Several levels of parallelism are available to the user: within a processor, among several processors in an SMP or a cluster, as well as parallelism among remote machines cooperating via the Internet.
    28 schema:editor Nef4d457e547f461696acf71e3b56fb5e
    29 schema:genre chapter
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf Nd288edd7a98d48e390dfdabe18a00f09
    33 schema:name SAT: A Programming Methodology with Skeletons and Collective Operations
    34 schema:pagination 29-63
    35 schema:productId N7d381b344bbe422e9f7e708035583b30
    36 Ne285cdf5296447e0848bbea5367522dc
    37 Ne3f2662a38bd44ab9ba6eba62bda2c2e
    38 schema:publisher N1c546ac5d8fa40b9b5ed7029a841a5b2
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025959239
    40 https://doi.org/10.1007/978-1-4471-0097-3_2
    41 schema:sdDatePublished 2019-04-16T08:42
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N1a82c232ed1d432ea434e0269cf33367
    44 schema:url https://link.springer.com/10.1007%2F978-1-4471-0097-3_2
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset chapters
    47 rdf:type schema:Chapter
    48 N075e4f27e35d453983ef48011d7bca3d schema:familyName Gorlatch
    49 schema:givenName Sergei
    50 rdf:type schema:Person
    51 N1a82c232ed1d432ea434e0269cf33367 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N1c546ac5d8fa40b9b5ed7029a841a5b2 schema:location London
    54 schema:name Springer London
    55 rdf:type schema:Organisation
    56 N47e605a0bad3468b8c7b2bee30f134b1 rdf:first N8575da312cf54cb09cf1489409ca8505
    57 rdf:rest rdf:nil
    58 N58d36f8a35e549d08117cfe27487ddb5 rdf:first N075e4f27e35d453983ef48011d7bca3d
    59 rdf:rest rdf:nil
    60 N7d381b344bbe422e9f7e708035583b30 schema:name doi
    61 schema:value 10.1007/978-1-4471-0097-3_2
    62 rdf:type schema:PropertyValue
    63 N8575da312cf54cb09cf1489409ca8505 schema:familyName Gorlatch
    64 schema:givenName Sergei
    65 rdf:type schema:Person
    66 N9cbedc2381464567bbb85688075f9228 schema:familyName Rabhi
    67 schema:givenName Fethi A.
    68 rdf:type schema:Person
    69 Nd288edd7a98d48e390dfdabe18a00f09 schema:isbn 978-1-4471-0097-3
    70 978-1-85233-506-9
    71 schema:name Patterns and Skeletons for Parallel and Distributed Computing
    72 rdf:type schema:Book
    73 Ne285cdf5296447e0848bbea5367522dc schema:name readcube_id
    74 schema:value 7bab7b657a632b30c69b2e4add3175be43c0fee9c8a17aca4b30410fe1216cf9
    75 rdf:type schema:PropertyValue
    76 Ne3f2662a38bd44ab9ba6eba62bda2c2e schema:name dimensions_id
    77 schema:value pub.1025959239
    78 rdf:type schema:PropertyValue
    79 Nef4d457e547f461696acf71e3b56fb5e rdf:first N9cbedc2381464567bbb85688075f9228
    80 rdf:rest N58d36f8a35e549d08117cfe27487ddb5
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Computer Software
    86 rdf:type schema:DefinedTerm
    87 sg:pub.10.1007/3-540-48387-x_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007386405
    88 https://doi.org/10.1007/3-540-48387-x_2
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/3540543961_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051539717
    91 https://doi.org/10.1007/3540543961_7
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-1-4612-1516-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007902651
    94 https://doi.org/10.1007/978-1-4612-1516-5_3
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-642-74884-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030317655
    97 https://doi.org/10.1007/978-3-642-74884-4_5
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bfb0100638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042106632
    100 https://doi.org/10.1007/bfb0100638
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1002/spe.4380240703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047877878
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1006/jpdc.1994.1091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041014201
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1006/jpdc.1995.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048020272
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/b978-0-444-88071-0.50023-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024474679
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0167-6423(97)00014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040022135
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1017/cbo9780511526626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098786523
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/12.42122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061088168
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/32.842952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061154599
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/ipdps.2000.846026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093448052
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/ipps.1999.760522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093961638
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/sc.2000.10024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093928674
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1142/s0129626498000456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062908059
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1145/197320.197356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007737646
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1145/301104.301116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098892278
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1145/355592.365646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053696262
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1145/362929.362947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048027451
    133 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...