Improved Methods for Checking Forces Based Models of Pedestrian Dynamics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-06-13

AUTHORS

B. Steffen , M. Boltes , A. Seyfried

ABSTRACT

The force based models of pedestrian dynamics like the social force model or the centrifugal force model can demonstrate and sometimes explain many features of the collective behaviour of pedestrian crowds as self organization effects based on fairly simple microscopic rules. However, experiments that have been done either gave only collective data like averages of flux and density, or treated only very simple situations like two person interactions. The progress of digital cameras and of image processing during recent years now allows the measurement of pedestrian movements on a ``microscopic'' scale with low costs. Comparing forces derived from measured trajectories with calculated ones for the same situation allows a microscopic analysis of models and shows what parameters are important in special situations. Applying these methods to bottleneck experiments shows the importance of removing the effects of head movement and of stepping from the trajectories before calculating forces. More... »

PAGES

885-888

Book

TITLE

Pedestrian and Evacuation Dynamics

ISBN

978-1-4419-9724-1
978-1-4419-9725-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-9725-8_93

DOI

http://dx.doi.org/10.1007/978-1-4419-9725-8_93

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004834095


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich GmbH, JSC, 52425, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Forschungszentrum J\u00fclich GmbH, JSC, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steffen", 
        "givenName": "B.", 
        "id": "sg:person.013270457265.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich GmbH, JSC, 52425, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Forschungszentrum J\u00fclich GmbH, JSC, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boltes", 
        "givenName": "M.", 
        "id": "sg:person.010315421157.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010315421157.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich GmbH, JSC, 52425, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Forschungszentrum J\u00fclich GmbH, JSC, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seyfried", 
        "givenName": "A.", 
        "id": "sg:person.014676264157.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676264157.39"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-06-13", 
    "datePublishedReg": "2011-06-13", 
    "description": "The force based models of pedestrian dynamics like the social force model or the centrifugal force model can demonstrate and sometimes explain many features of the collective behaviour of pedestrian crowds as self organization effects based on fairly simple microscopic rules. However, experiments that have been done either gave only collective data like averages of flux and density, or treated only very simple situations like two person interactions. The progress of digital cameras and of image processing during recent years now allows the measurement of pedestrian movements on a ``microscopic'' scale with low costs. Comparing forces derived from measured trajectories with calculated ones for the same situation allows a microscopic analysis of models and shows what parameters are important in special situations. Applying these methods to bottleneck experiments shows the importance of removing the effects of head movement and of stepping from the trajectories before calculating forces.", 
    "editor": [
      {
        "familyName": "Peacock", 
        "givenName": "Richard D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuligowski", 
        "givenName": "Erica D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Averill", 
        "givenName": "Jason D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-9725-8_93", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-9724-1", 
        "978-1-4419-9725-8"
      ], 
      "name": "Pedestrian and Evacuation Dynamics", 
      "type": "Book"
    }, 
    "keywords": [
      "image processing", 
      "social force model", 
      "digital camera", 
      "average of flux", 
      "pedestrian dynamics", 
      "pedestrian crowds", 
      "Comparing Force", 
      "person interactions", 
      "pedestrian movement", 
      "measured trajectories", 
      "collective behavior", 
      "low cost", 
      "head movements", 
      "recent years", 
      "camera", 
      "crowd", 
      "microscopic rules", 
      "trajectories", 
      "simple situations", 
      "model", 
      "situation", 
      "processing", 
      "rules", 
      "force model", 
      "method", 
      "same situation", 
      "experiments", 
      "cost", 
      "special situations", 
      "features", 
      "collective data", 
      "data", 
      "movement", 
      "one", 
      "dynamics", 
      "parameters", 
      "progress", 
      "analysis", 
      "behavior", 
      "interaction", 
      "importance", 
      "scale", 
      "average", 
      "force", 
      "measurements", 
      "years", 
      "organization effects", 
      "density", 
      "effect", 
      "microscopic", 
      "microscopic analysis", 
      "flux", 
      "centrifugal force model", 
      "self organization effects", 
      "simple microscopic rules", 
      "Checking Forces"
    ], 
    "name": "Improved Methods for Checking Forces Based Models of Pedestrian Dynamics", 
    "pagination": "885-888", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004834095"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-9725-8_93"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-9725-8_93", 
      "https://app.dimensions.ai/details/publication/pub.1004834095"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_67.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4419-9725-8_93"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9725-8_93'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9725-8_93'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9725-8_93'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9725-8_93'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-9725-8_93 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N09acb671a5bf4b4baf8d20a2243230d5
4 schema:datePublished 2011-06-13
5 schema:datePublishedReg 2011-06-13
6 schema:description The force based models of pedestrian dynamics like the social force model or the centrifugal force model can demonstrate and sometimes explain many features of the collective behaviour of pedestrian crowds as self organization effects based on fairly simple microscopic rules. However, experiments that have been done either gave only collective data like averages of flux and density, or treated only very simple situations like two person interactions. The progress of digital cameras and of image processing during recent years now allows the measurement of pedestrian movements on a ``microscopic'' scale with low costs. Comparing forces derived from measured trajectories with calculated ones for the same situation allows a microscopic analysis of models and shows what parameters are important in special situations. Applying these methods to bottleneck experiments shows the importance of removing the effects of head movement and of stepping from the trajectories before calculating forces.
7 schema:editor Ne2a40ae8242f4914b954811ee091e39f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3316af9271644e6ab3e81235e6bafa01
12 schema:keywords Checking Forces
13 Comparing Force
14 analysis
15 average
16 average of flux
17 behavior
18 camera
19 centrifugal force model
20 collective behavior
21 collective data
22 cost
23 crowd
24 data
25 density
26 digital camera
27 dynamics
28 effect
29 experiments
30 features
31 flux
32 force
33 force model
34 head movements
35 image processing
36 importance
37 interaction
38 low cost
39 measured trajectories
40 measurements
41 method
42 microscopic
43 microscopic analysis
44 microscopic rules
45 model
46 movement
47 one
48 organization effects
49 parameters
50 pedestrian crowds
51 pedestrian dynamics
52 pedestrian movement
53 person interactions
54 processing
55 progress
56 recent years
57 rules
58 same situation
59 scale
60 self organization effects
61 simple microscopic rules
62 simple situations
63 situation
64 social force model
65 special situations
66 trajectories
67 years
68 schema:name Improved Methods for Checking Forces Based Models of Pedestrian Dynamics
69 schema:pagination 885-888
70 schema:productId Nb213a63a9555409fb4a9afeb108b1d56
71 Ndd5456cec3d8445abd2be48e353402a9
72 schema:publisher N496b3aaf553c432cbbf656a75c83f414
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004834095
74 https://doi.org/10.1007/978-1-4419-9725-8_93
75 schema:sdDatePublished 2022-01-01T19:26
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N0215d068fd55416490506317a7e67e20
78 schema:url https://doi.org/10.1007/978-1-4419-9725-8_93
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N00ebc6e0ba52406fa98f8e6243aa70ac rdf:first sg:person.010315421157.34
83 rdf:rest N9c505e7b1517438f8b235af0ea1de22a
84 N0215d068fd55416490506317a7e67e20 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N09acb671a5bf4b4baf8d20a2243230d5 rdf:first sg:person.013270457265.00
87 rdf:rest N00ebc6e0ba52406fa98f8e6243aa70ac
88 N3316af9271644e6ab3e81235e6bafa01 schema:isbn 978-1-4419-9724-1
89 978-1-4419-9725-8
90 schema:name Pedestrian and Evacuation Dynamics
91 rdf:type schema:Book
92 N34284fe69a12436d8ea31c3e7c6a2187 schema:familyName Averill
93 schema:givenName Jason D.
94 rdf:type schema:Person
95 N496b3aaf553c432cbbf656a75c83f414 schema:name Springer Nature
96 rdf:type schema:Organisation
97 N51c46c1459b147cb89fa728a45b67ec7 rdf:first Nc0b806bf04d444e0a45853e009290c02
98 rdf:rest N65e5699e05f8473695ddd0fcb8e7b69d
99 N65e5699e05f8473695ddd0fcb8e7b69d rdf:first N34284fe69a12436d8ea31c3e7c6a2187
100 rdf:rest rdf:nil
101 N9c505e7b1517438f8b235af0ea1de22a rdf:first sg:person.014676264157.39
102 rdf:rest rdf:nil
103 Na3a7c2f519d7497d927b852f54b3218b schema:familyName Peacock
104 schema:givenName Richard D.
105 rdf:type schema:Person
106 Nb213a63a9555409fb4a9afeb108b1d56 schema:name dimensions_id
107 schema:value pub.1004834095
108 rdf:type schema:PropertyValue
109 Nc0b806bf04d444e0a45853e009290c02 schema:familyName Kuligowski
110 schema:givenName Erica D.
111 rdf:type schema:Person
112 Ndd5456cec3d8445abd2be48e353402a9 schema:name doi
113 schema:value 10.1007/978-1-4419-9725-8_93
114 rdf:type schema:PropertyValue
115 Ne2a40ae8242f4914b954811ee091e39f rdf:first Na3a7c2f519d7497d927b852f54b3218b
116 rdf:rest N51c46c1459b147cb89fa728a45b67ec7
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
121 schema:name Artificial Intelligence and Image Processing
122 rdf:type schema:DefinedTerm
123 sg:person.010315421157.34 schema:affiliation grid-institutes:grid.8385.6
124 schema:familyName Boltes
125 schema:givenName M.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010315421157.34
127 rdf:type schema:Person
128 sg:person.013270457265.00 schema:affiliation grid-institutes:grid.8385.6
129 schema:familyName Steffen
130 schema:givenName B.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00
132 rdf:type schema:Person
133 sg:person.014676264157.39 schema:affiliation grid-institutes:grid.8385.6
134 schema:familyName Seyfried
135 schema:givenName A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676264157.39
137 rdf:type schema:Person
138 grid-institutes:grid.8385.6 schema:alternateName Forschungszentrum Jülich GmbH, JSC, 52425, Jülich, Germany
139 schema:name Forschungszentrum Jülich GmbH, JSC, 52425, Jülich, Germany
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...