Patient Specific Hemodynamics: Combined 4D Flow-Sensitive MRI and CFD View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-05-04

AUTHORS

A. F. Stalder , Z. Liu , J. Hennig , J. G. Korvink , K. C. Li , M. Markl

ABSTRACT

Both 4D flow-sensitive MRI and computational fluid dynamics (CFD) have successfully been applied to analyze complex 3D flow patterns in the cardiovascular system. However, both modalities suffer from limitations related to spatiotemporal resolution, measurement errors, and noise (MRI) or incomplete model assumptions and boundary conditions (CFD). The aim of this study was to directly compare the results of 4D flow-sensitive MRI and CFD in a simple model system in vitro and in complex models of the thoracic aorta in vivo. By comparing both modalities within a single framework, discrepancies were observed but the overall patterns were coherent. If adequate methods are used (e.g., patient-specific boundary conditions, fine boundary layer mesh), CFD can compute very accurate flow and vessel wall parameters, such as wall shear stress (WSS). The combination of 4D flow-sensitive MRI and CFD can be used to refine both methodologies, which may help to enhance the assessment and understanding of blood flow in vivo. More... »

PAGES

27-38

Book

TITLE

Computational Biomechanics for Medicine

ISBN

978-1-4419-9618-3
978-1-4419-9619-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-9619-0_4

DOI

http://dx.doi.org/10.1007/978-1-4419-9619-0_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005121552


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic Radiology \u2013 Medical Physics, University Hospital, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China", 
            "Department of Diagnostic Radiology \u2013 Medical Physics, University Hospital, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stalder", 
        "givenName": "A. F.", 
        "id": "sg:person.0657702403.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657702403.26"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Z.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hennig", 
        "givenName": "J.", 
        "id": "sg:person.014462070357.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462070357.28"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Korvink", 
        "givenName": "J. G.", 
        "id": "sg:person.0614707320.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614707320.00"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "K. C.", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Markl", 
        "givenName": "M.", 
        "id": "sg:person.01071157260.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071157260.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-05-04", 
    "datePublishedReg": "2011-05-04", 
    "description": "Both 4D flow-sensitive MRI and computational fluid dynamics (CFD) have successfully been applied to analyze complex 3D flow patterns in the cardiovascular system. However, both modalities suffer from limitations related to spatiotemporal resolution, measurement errors, and noise (MRI) or incomplete model assumptions and boundary conditions (CFD). The aim of this study was to directly compare the results of 4D flow-sensitive MRI and CFD in a simple model system in vitro and in complex models of the thoracic aorta in vivo. By comparing both modalities within a single framework, discrepancies were observed but the overall patterns were coherent. If adequate methods are used (e.g., patient-specific boundary conditions, fine boundary layer mesh), CFD can compute very accurate flow and vessel wall parameters, such as wall shear stress (WSS). The combination of 4D flow-sensitive MRI and CFD can be used to refine both methodologies, which may help to enhance the assessment and understanding of blood flow in vivo.", 
    "editor": [
      {
        "familyName": "Wittek", 
        "givenName": "Adam", 
        "type": "Person"
      }, 
      {
        "familyName": "Nielsen", 
        "givenName": "Poul M.F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Miller", 
        "givenName": "Karol", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-9619-0_4", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-9618-3", 
        "978-1-4419-9619-0"
      ], 
      "name": "Computational Biomechanics for Medicine", 
      "type": "Book"
    }, 
    "keywords": [
      "computational fluid dynamics", 
      "wall shear stress", 
      "complex 3D flow patterns", 
      "boundary conditions", 
      "fluid dynamics", 
      "complex models", 
      "accurate flow", 
      "simple model system", 
      "model assumptions", 
      "measurement error", 
      "shear stress", 
      "flow patterns", 
      "wall parameters", 
      "single framework", 
      "vessel wall parameters", 
      "flow-sensitive MRI", 
      "flow", 
      "spatiotemporal resolution", 
      "dynamics", 
      "noise", 
      "assumption", 
      "error", 
      "system", 
      "parameters", 
      "model", 
      "framework", 
      "methodology", 
      "stress", 
      "model system", 
      "adequate method", 
      "conditions", 
      "resolution", 
      "method", 
      "results", 
      "discrepancy", 
      "limitations", 
      "sensitive MRI", 
      "combination", 
      "patterns", 
      "assessment", 
      "study", 
      "understanding", 
      "aim", 
      "MRI", 
      "blood flow", 
      "cardiovascular system", 
      "overall pattern", 
      "modalities", 
      "thoracic aorta", 
      "vivo", 
      "aorta", 
      "vitro"
    ], 
    "name": "Patient Specific Hemodynamics: Combined 4D Flow-Sensitive MRI and CFD", 
    "pagination": "27-38", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005121552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-9619-0_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-9619-0_4", 
      "https://app.dimensions.ai/details/publication/pub.1005121552"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_186.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4419-9619-0_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9619-0_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9619-0_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9619-0_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-9619-0_4'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      22 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-9619-0_4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N16a17335adb34bffa25e17baeb0c99cb
4 schema:datePublished 2011-05-04
5 schema:datePublishedReg 2011-05-04
6 schema:description Both 4D flow-sensitive MRI and computational fluid dynamics (CFD) have successfully been applied to analyze complex 3D flow patterns in the cardiovascular system. However, both modalities suffer from limitations related to spatiotemporal resolution, measurement errors, and noise (MRI) or incomplete model assumptions and boundary conditions (CFD). The aim of this study was to directly compare the results of 4D flow-sensitive MRI and CFD in a simple model system in vitro and in complex models of the thoracic aorta in vivo. By comparing both modalities within a single framework, discrepancies were observed but the overall patterns were coherent. If adequate methods are used (e.g., patient-specific boundary conditions, fine boundary layer mesh), CFD can compute very accurate flow and vessel wall parameters, such as wall shear stress (WSS). The combination of 4D flow-sensitive MRI and CFD can be used to refine both methodologies, which may help to enhance the assessment and understanding of blood flow in vivo.
7 schema:editor N47639c13d9fa484dbbc878fc7b693f6b
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nf394c22faa2646f2af1ea7d3e7d8f18f
11 schema:keywords MRI
12 accurate flow
13 adequate method
14 aim
15 aorta
16 assessment
17 assumption
18 blood flow
19 boundary conditions
20 cardiovascular system
21 combination
22 complex 3D flow patterns
23 complex models
24 computational fluid dynamics
25 conditions
26 discrepancy
27 dynamics
28 error
29 flow
30 flow patterns
31 flow-sensitive MRI
32 fluid dynamics
33 framework
34 limitations
35 measurement error
36 method
37 methodology
38 modalities
39 model
40 model assumptions
41 model system
42 noise
43 overall pattern
44 parameters
45 patterns
46 resolution
47 results
48 sensitive MRI
49 shear stress
50 simple model system
51 single framework
52 spatiotemporal resolution
53 stress
54 study
55 system
56 thoracic aorta
57 understanding
58 vessel wall parameters
59 vitro
60 vivo
61 wall parameters
62 wall shear stress
63 schema:name Patient Specific Hemodynamics: Combined 4D Flow-Sensitive MRI and CFD
64 schema:pagination 27-38
65 schema:productId Nc50ffde306b141d9817a02cebcf7fd51
66 Nd26e5f12935e492599bba04598028e79
67 schema:publisher N3aa37158804e4c3bb64b791f42f414f7
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005121552
69 https://doi.org/10.1007/978-1-4419-9619-0_4
70 schema:sdDatePublished 2022-10-01T06:54
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N56820ccf462046fcaecd0ed71f50de9b
73 schema:url https://doi.org/10.1007/978-1-4419-9619-0_4
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N12e21f2d31364868b6ffad520e0169cd schema:familyName Liu
78 schema:givenName Z.
79 rdf:type schema:Person
80 N16a17335adb34bffa25e17baeb0c99cb rdf:first sg:person.0657702403.26
81 rdf:rest N4fcb27394b674c9a8f612282e831d051
82 N242a8a5cfddf4ae0b79075d21490c2db rdf:first sg:person.01326527402.59
83 rdf:rest Nda63692c17264924ad7116b120ff07d0
84 N2be7c80375ac47ed945a44fe52f77b31 rdf:first Na04540c5196846ee983016e7694181c9
85 rdf:rest Nf498bea0eecd4ebdbbd2edb0ab829792
86 N3aa37158804e4c3bb64b791f42f414f7 schema:name Springer Nature
87 rdf:type schema:Organisation
88 N47639c13d9fa484dbbc878fc7b693f6b rdf:first Nb4dffd1d58a14fb8a6d117d33ea54a0b
89 rdf:rest N2be7c80375ac47ed945a44fe52f77b31
90 N4fcb27394b674c9a8f612282e831d051 rdf:first N12e21f2d31364868b6ffad520e0169cd
91 rdf:rest N6461b24f7a644e4299e3e7b3ee0d4e5f
92 N56820ccf462046fcaecd0ed71f50de9b schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N6461b24f7a644e4299e3e7b3ee0d4e5f rdf:first sg:person.014462070357.28
95 rdf:rest N8ea32185c0eb4dbc9c787c99130d4ff4
96 N8a24caaddb884a978f0f48ba653923c7 schema:familyName Miller
97 schema:givenName Karol
98 rdf:type schema:Person
99 N8ea32185c0eb4dbc9c787c99130d4ff4 rdf:first sg:person.0614707320.00
100 rdf:rest N242a8a5cfddf4ae0b79075d21490c2db
101 Na04540c5196846ee983016e7694181c9 schema:familyName Nielsen
102 schema:givenName Poul M.F.
103 rdf:type schema:Person
104 Nb4dffd1d58a14fb8a6d117d33ea54a0b schema:familyName Wittek
105 schema:givenName Adam
106 rdf:type schema:Person
107 Nc50ffde306b141d9817a02cebcf7fd51 schema:name dimensions_id
108 schema:value pub.1005121552
109 rdf:type schema:PropertyValue
110 Nd26e5f12935e492599bba04598028e79 schema:name doi
111 schema:value 10.1007/978-1-4419-9619-0_4
112 rdf:type schema:PropertyValue
113 Nda63692c17264924ad7116b120ff07d0 rdf:first sg:person.01071157260.17
114 rdf:rest rdf:nil
115 Nf394c22faa2646f2af1ea7d3e7d8f18f schema:isbn 978-1-4419-9618-3
116 978-1-4419-9619-0
117 schema:name Computational Biomechanics for Medicine
118 rdf:type schema:Book
119 Nf498bea0eecd4ebdbbd2edb0ab829792 rdf:first N8a24caaddb884a978f0f48ba653923c7
120 rdf:rest rdf:nil
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
125 schema:name Interdisciplinary Engineering
126 rdf:type schema:DefinedTerm
127 sg:person.01071157260.17 schema:familyName Markl
128 schema:givenName M.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071157260.17
130 rdf:type schema:Person
131 sg:person.01326527402.59 schema:familyName Li
132 schema:givenName K. C.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
134 rdf:type schema:Person
135 sg:person.014462070357.28 schema:familyName Hennig
136 schema:givenName J.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014462070357.28
138 rdf:type schema:Person
139 sg:person.0614707320.00 schema:familyName Korvink
140 schema:givenName J. G.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614707320.00
142 rdf:type schema:Person
143 sg:person.0657702403.26 schema:affiliation grid-institutes:None
144 schema:familyName Stalder
145 schema:givenName A. F.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657702403.26
147 rdf:type schema:Person
148 grid-institutes:None schema:alternateName Department of Diagnostic Radiology – Medical Physics, University Hospital, Freiburg, Germany
149 schema:name Department of Diagnostic Radiology – Medical Physics, University Hospital, Freiburg, Germany
150 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...