Modeling Antibiotic Resistance in Bacterial Colonies Using Agent-Based Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-12-09

AUTHORS

James T. Murphy , Ray Walshe

ABSTRACT

The agent-based approach to modelling bacterial population growth and development is a powerful tool for understanding the relationships between changes at the individual cellular level and overall population dynamics. Agent-based models are designed from the “bottom-up”, with rules and parameters created for the individual components of the simulation rather than for the population as a whole. The behaviour of the system is therefore an emergent property of the interactions between its constituent parts. In this chapter, an agent-based model called Micro-Gen is described, which can be used to investigate the effects of antibiotic resistance mechanisms on the response of bacteria to antibiotic treatment. The agent-based approach provides a rational framework for tracing back high-level pharmacodynamic parameters, such as the MIC (Minimum Inhibitory Concentration) of an antibiotic, to low-level biochemical information about the individual molecular components. The studies were carried out on a clinically significant species of bacteria called methicillin-resistant Staphylococcus aureus (MRSA), which are characterised by their increased resistance to many commonly prescribed β-lactam antibiotics. More... »

PAGES

131-154

Book

TITLE

Understanding the Dynamics of Biological Systems

ISBN

978-1-4419-7963-6
978-1-4419-7964-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-7964-3_7

DOI

http://dx.doi.org/10.1007/978-1-4419-7964-3_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036708058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dublin City University", 
          "id": "https://www.grid.ac/institutes/grid.15596.3e", 
          "name": [
            "Centre for Scientific Computing and Complex Systems Modeling, School of Computing, Dublin City University, Dublin 9, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murphy", 
        "givenName": "James T.", 
        "id": "sg:person.01331104761.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331104761.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dublin City University", 
          "id": "https://www.grid.ac/institutes/grid.15596.3e", 
          "name": [
            "Centre for Scientific Computing and Complex Systems Modeling, School of Computing, Dublin City University, Dublin 9, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walshe", 
        "givenName": "Ray", 
        "id": "sg:person.0644527235.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644527235.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/aac.47.2.658-664.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002533105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.2.675-678.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004671042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican1070-120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007582166", 
          "https://doi.org/10.1038/scientificamerican1070-120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m403589200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009169381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/146837a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010051870", 
          "https://doi.org/10.1038/146837a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/146837a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010051870", 
          "https://doi.org/10.1038/146837a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2008.05.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010309349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/510079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014840276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2007.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017388643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1999.tb08687.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019665782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1999.tb08687.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019665782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2005.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019784536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-005-5148-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021730090", 
          "https://doi.org/10.1007/s00018-005-5148-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010090405266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023924967", 
          "https://doi.org/10.1023/a:1010090405266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027242102", 
          "https://doi.org/10.1038/35021219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.38.7.1649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029331094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029612311", 
          "https://doi.org/10.1038/nrmicro1232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029612311", 
          "https://doi.org/10.1038/nrmicro1232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368046a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674164", 
          "https://doi.org/10.1038/368046a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.36.2.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030253269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030272790", 
          "https://doi.org/10.1038/nm1145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030272790", 
          "https://doi.org/10.1038/nm1145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.48.10.3670-3676.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030329385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.17.3.581-611.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030356021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(98)00188-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030692283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3181/00379727-60-15089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031994217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3181/00379727-60-15089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031994217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032747209", 
          "https://doi.org/10.1038/nrmicro1614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.7036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033931675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.7036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033931675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035890801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3320755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043485923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3320755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043485923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.48.6.2295-2297.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046391185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2001.2466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047488058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-1-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047759317", 
          "https://doi.org/10.1186/1471-2180-1-27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.1941.00200110003001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049013364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030102i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051294839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030102i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051294839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3010139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052570601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3010139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052570601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1097(99)00366-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054655572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi990025e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055217321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi990025e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055217321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-144-12-3275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060369722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1055144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.257.5073.1064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062544479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.99.2579.452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062664938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183109013765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062905043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075942759", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081968078", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083357042", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12-09", 
    "datePublishedReg": "2010-12-09", 
    "description": "The agent-based approach to modelling bacterial population growth and development is a powerful tool for understanding the relationships between changes at the individual cellular level and overall population dynamics. Agent-based models are designed from the \u201cbottom-up\u201d, with rules and parameters created for the individual components of the simulation rather than for the population as a whole. The behaviour of the system is therefore an emergent property of the interactions between its constituent parts. In this chapter, an agent-based model called Micro-Gen is described, which can be used to investigate the effects of antibiotic resistance mechanisms on the response of bacteria to antibiotic treatment. The agent-based approach provides a rational framework for tracing back high-level pharmacodynamic parameters, such as the MIC (Minimum Inhibitory Concentration) of an antibiotic, to low-level biochemical information about the individual molecular components. The studies were carried out on a clinically significant species of bacteria called methicillin-resistant Staphylococcus aureus (MRSA), which are characterised by their increased resistance to many commonly prescribed \u03b2-lactam antibiotics.", 
    "editor": [
      {
        "familyName": "Dubitzky", 
        "givenName": "Werner", 
        "type": "Person"
      }, 
      {
        "familyName": "Southgate", 
        "givenName": "Jennifer", 
        "type": "Person"
      }, 
      {
        "familyName": "Fu\u00df", 
        "givenName": "Hendrik", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-7964-3_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-7963-6", 
        "978-1-4419-7964-3"
      ], 
      "name": "Understanding the Dynamics of Biological Systems", 
      "type": "Book"
    }, 
    "name": "Modeling Antibiotic Resistance in Bacterial Colonies Using Agent-Based Approach", 
    "pagination": "131-154", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036708058"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-7964-3_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aedd1e69d2cd697b18668949c02d4a6c3dca6e3c47637478687c7760b1edb7eb"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-7964-3_7", 
      "https://app.dimensions.ai/details/publication/pub.1036708058"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71707_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4419-7964-3_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7964-3_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7964-3_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7964-3_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7964-3_7'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      23 PREDICATES      68 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-7964-3_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb0dd980a50f8410bb7136d457355402d
4 schema:citation sg:pub.10.1007/s00018-005-5148-6
5 sg:pub.10.1023/a:1010090405266
6 sg:pub.10.1038/146837a0
7 sg:pub.10.1038/35021219
8 sg:pub.10.1038/368046a0
9 sg:pub.10.1038/nm1145
10 sg:pub.10.1038/nrmicro1232
11 sg:pub.10.1038/nrmicro1614
12 sg:pub.10.1038/scientificamerican1070-120
13 sg:pub.10.1186/1471-2180-1-27
14 https://app.dimensions.ai/details/publication/pub.1075942759
15 https://app.dimensions.ai/details/publication/pub.1081968078
16 https://app.dimensions.ai/details/publication/pub.1083357042
17 https://doi.org/10.1001/archinte.1941.00200110003001
18 https://doi.org/10.1006/jtbi.2001.2466
19 https://doi.org/10.1016/j.drudis.2007.02.013
20 https://doi.org/10.1016/j.jtbi.2008.05.037
21 https://doi.org/10.1016/j.mimet.2005.08.006
22 https://doi.org/10.1016/s0304-3800(98)00188-4
23 https://doi.org/10.1016/s0378-1097(99)00366-3
24 https://doi.org/10.1021/bi990025e
25 https://doi.org/10.1021/cr030102i
26 https://doi.org/10.1042/bj3010139
27 https://doi.org/10.1042/bj3320755
28 https://doi.org/10.1074/jbc.m403589200
29 https://doi.org/10.1086/510079
30 https://doi.org/10.1093/nar/gkj067
31 https://doi.org/10.1099/00221287-144-12-3275
32 https://doi.org/10.1103/physreve.59.7036
33 https://doi.org/10.1111/j.1574-6968.1999.tb08687.x
34 https://doi.org/10.1126/science.1055144
35 https://doi.org/10.1126/science.257.5073.1064
36 https://doi.org/10.1126/science.99.2579.452
37 https://doi.org/10.1128/aac.36.2.440
38 https://doi.org/10.1128/aac.38.7.1649
39 https://doi.org/10.1128/aac.47.2.658-664.2003
40 https://doi.org/10.1128/aac.48.10.3670-3676.2004
41 https://doi.org/10.1128/aac.48.6.2295-2297.2004
42 https://doi.org/10.1128/aem.70.2.675-678.2004
43 https://doi.org/10.1128/cmr.17.3.581-611.2004
44 https://doi.org/10.1142/s0129183109013765
45 https://doi.org/10.3181/00379727-60-15089
46 schema:datePublished 2010-12-09
47 schema:datePublishedReg 2010-12-09
48 schema:description The agent-based approach to modelling bacterial population growth and development is a powerful tool for understanding the relationships between changes at the individual cellular level and overall population dynamics. Agent-based models are designed from the “bottom-up”, with rules and parameters created for the individual components of the simulation rather than for the population as a whole. The behaviour of the system is therefore an emergent property of the interactions between its constituent parts. In this chapter, an agent-based model called Micro-Gen is described, which can be used to investigate the effects of antibiotic resistance mechanisms on the response of bacteria to antibiotic treatment. The agent-based approach provides a rational framework for tracing back high-level pharmacodynamic parameters, such as the MIC (Minimum Inhibitory Concentration) of an antibiotic, to low-level biochemical information about the individual molecular components. The studies were carried out on a clinically significant species of bacteria called methicillin-resistant Staphylococcus aureus (MRSA), which are characterised by their increased resistance to many commonly prescribed β-lactam antibiotics.
49 schema:editor N47090d8a7a7d4f7daea5656142802c60
50 schema:genre chapter
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N8006d1a71b6a4cfd9d63b687a7f67e45
54 schema:name Modeling Antibiotic Resistance in Bacterial Colonies Using Agent-Based Approach
55 schema:pagination 131-154
56 schema:productId N0e812709301548f3a3671585f71cb363
57 N13fb1b556a534df485320243194bb97c
58 Nf94502d166f74f2fbfdfb4af421a377b
59 schema:publisher Ne4f8c9967e344bd0bb43a96ebe116010
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036708058
61 https://doi.org/10.1007/978-1-4419-7964-3_7
62 schema:sdDatePublished 2019-04-16T08:39
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N5fa89744dd8643e9814ca01bd14de757
65 schema:url https://link.springer.com/10.1007%2F978-1-4419-7964-3_7
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N0e812709301548f3a3671585f71cb363 schema:name doi
70 schema:value 10.1007/978-1-4419-7964-3_7
71 rdf:type schema:PropertyValue
72 N13fb1b556a534df485320243194bb97c schema:name readcube_id
73 schema:value aedd1e69d2cd697b18668949c02d4a6c3dca6e3c47637478687c7760b1edb7eb
74 rdf:type schema:PropertyValue
75 N275b01b839814bbb9528f199556ba22c rdf:first N4274eedb171d48bd8cfe6e16668b61c6
76 rdf:rest rdf:nil
77 N4274eedb171d48bd8cfe6e16668b61c6 schema:familyName Fuß
78 schema:givenName Hendrik
79 rdf:type schema:Person
80 N47090d8a7a7d4f7daea5656142802c60 rdf:first Nd59974c8ea0444d2a20e48157059aff3
81 rdf:rest N6bd1f261e15a40e38fc659a858a13581
82 N5fa89744dd8643e9814ca01bd14de757 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N6bd1f261e15a40e38fc659a858a13581 rdf:first Na3ba2847a80642efb0310e67e8fa1cf8
85 rdf:rest N275b01b839814bbb9528f199556ba22c
86 N8006d1a71b6a4cfd9d63b687a7f67e45 schema:isbn 978-1-4419-7963-6
87 978-1-4419-7964-3
88 schema:name Understanding the Dynamics of Biological Systems
89 rdf:type schema:Book
90 Na3ba2847a80642efb0310e67e8fa1cf8 schema:familyName Southgate
91 schema:givenName Jennifer
92 rdf:type schema:Person
93 Nb0dd980a50f8410bb7136d457355402d rdf:first sg:person.01331104761.13
94 rdf:rest Nc180c542b3f841f9a3a2a787f502ac4e
95 Nc180c542b3f841f9a3a2a787f502ac4e rdf:first sg:person.0644527235.52
96 rdf:rest rdf:nil
97 Nd59974c8ea0444d2a20e48157059aff3 schema:familyName Dubitzky
98 schema:givenName Werner
99 rdf:type schema:Person
100 Ne4f8c9967e344bd0bb43a96ebe116010 schema:location New York, NY
101 schema:name Springer New York
102 rdf:type schema:Organisation
103 Nf94502d166f74f2fbfdfb4af421a377b schema:name dimensions_id
104 schema:value pub.1036708058
105 rdf:type schema:PropertyValue
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.01331104761.13 schema:affiliation https://www.grid.ac/institutes/grid.15596.3e
113 schema:familyName Murphy
114 schema:givenName James T.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331104761.13
116 rdf:type schema:Person
117 sg:person.0644527235.52 schema:affiliation https://www.grid.ac/institutes/grid.15596.3e
118 schema:familyName Walshe
119 schema:givenName Ray
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644527235.52
121 rdf:type schema:Person
122 sg:pub.10.1007/s00018-005-5148-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021730090
123 https://doi.org/10.1007/s00018-005-5148-6
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1010090405266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023924967
126 https://doi.org/10.1023/a:1010090405266
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/146837a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010051870
129 https://doi.org/10.1038/146837a0
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/35021219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027242102
132 https://doi.org/10.1038/35021219
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/368046a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029674164
135 https://doi.org/10.1038/368046a0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nm1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030272790
138 https://doi.org/10.1038/nm1145
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nrmicro1232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029612311
141 https://doi.org/10.1038/nrmicro1232
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nrmicro1614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032747209
144 https://doi.org/10.1038/nrmicro1614
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/scientificamerican1070-120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007582166
147 https://doi.org/10.1038/scientificamerican1070-120
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/1471-2180-1-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047759317
150 https://doi.org/10.1186/1471-2180-1-27
151 rdf:type schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1075942759 schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1081968078 schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1083357042 schema:CreativeWork
155 https://doi.org/10.1001/archinte.1941.00200110003001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049013364
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1006/jtbi.2001.2466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047488058
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.drudis.2007.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017388643
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jtbi.2008.05.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010309349
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.mimet.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019784536
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0304-3800(98)00188-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030692283
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0378-1097(99)00366-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054655572
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/bi990025e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055217321
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/cr030102i schema:sameAs https://app.dimensions.ai/details/publication/pub.1051294839
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1042/bj3010139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052570601
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1042/bj3320755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043485923
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1074/jbc.m403589200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009169381
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1086/510079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014840276
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/nar/gkj067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035890801
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1099/00221287-144-12-3275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060369722
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.59.7036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033931675
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1574-6968.1999.tb08687.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019665782
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1055144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444289
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.257.5073.1064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062544479
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.99.2579.452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062664938
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1128/aac.36.2.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030253269
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1128/aac.38.7.1649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029331094
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1128/aac.47.2.658-664.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002533105
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1128/aac.48.10.3670-3676.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030329385
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1128/aac.48.6.2295-2297.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046391185
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1128/aem.70.2.675-678.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004671042
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1128/cmr.17.3.581-611.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030356021
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1142/s0129183109013765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062905043
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3181/00379727-60-15089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031994217
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.15596.3e schema:alternateName Dublin City University
214 schema:name Centre for Scientific Computing and Complex Systems Modeling, School of Computing, Dublin City University, Dublin 9, Ireland
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...