Liquid Crystal Light-Valves for Slow-Light and Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-10-01

AUTHORS

U. Bortolozzo , S. Residori , J.-P. Huignard

ABSTRACT

By performing two-wave mixing experiments in a liquid crystal light valve we obtain slow and fast-light effects with a deceleration of light pulses down to group velocities as small as a few tenths of mm/s. The wave-mixing process is characterized by the presence of multiple-order output beams, each experiencing a different group delay. On each output order, the group delay can be controlled by changing the frequency detuning between the pump and probe as well as by varying the external voltage applied to the light-valve. The large group delay provided by the beam coupling in the light-valve corresponds to a large group index, which, on the other hand, is associated to a narrow frequency bandwidth of the two-wave-mixing gain. These properties can be used to realize applications in high precision interferometry and adaptive holography, with systems that allows the detection of subpicometer displacements. More... »

PAGES

39-54

Book

TITLE

Information Optics and Photonics

ISBN

978-1-4419-7379-5
978-1-4419-7380-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-7380-1_3

DOI

http://dx.doi.org/10.1007/978-1-4419-7380-1_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050061349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Thales Group (France)", 
          "id": "https://www.grid.ac/institutes/grid.410363.3", 
          "name": [
            "Thales Research and Technology, 1 Avenue A. Fresnel, 91767, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bortolozzo", 
        "givenName": "U.", 
        "id": "sg:person.01105210140.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105210140.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thales Group (France)", 
          "id": "https://www.grid.ac/institutes/grid.410363.3", 
          "name": [
            "Thales Research and Technology, 1 Avenue A. Fresnel, 91767, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Residori", 
        "givenName": "S.", 
        "id": "sg:person.01361016337.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361016337.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thales Group (France)", 
          "id": "https://www.grid.ac/institutes/grid.410363.3", 
          "name": [
            "Thales Research and Technology, 1 Avenue A. Fresnel, 91767, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huignard", 
        "givenName": "J.-P.", 
        "id": "sg:person.0637660512.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637660512.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.99.023901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009480576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.023901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009480576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jhs.2009.1016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016490300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crhy.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020429073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027939919", 
          "https://doi.org/10.1038/nphoton.2008.147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b106782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033516849", 
          "https://doi.org/10.1007/b106782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b106782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033516849", 
          "https://doi.org/10.1007/b106782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042899196", 
          "https://doi.org/10.1038/17561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042899196", 
          "https://doi.org/10.1038/17561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.053835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.053835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.203603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.203603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.113903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.113903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.133903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.133903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.243604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.243604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.153902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.153902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.21.003706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065097779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.43.001167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065118821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.22.001855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.002166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.000915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.34.002006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065227387"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10-01", 
    "datePublishedReg": "2010-10-01", 
    "description": "By performing two-wave mixing experiments in a liquid crystal light valve we obtain slow and fast-light effects with a deceleration of light pulses down to group velocities as small as a few tenths of mm/s. The wave-mixing process is characterized by the presence of multiple-order output beams, each experiencing a different group delay. On each output order, the group delay can be controlled by changing the frequency detuning between the pump and probe as well as by varying the external voltage applied to the light-valve. The large group delay provided by the beam coupling in the light-valve corresponds to a large group index, which, on the other hand, is associated to a narrow frequency bandwidth of the two-wave-mixing gain. These properties can be used to realize applications in high precision interferometry and adaptive holography, with systems that allows the detection of subpicometer displacements.", 
    "editor": [
      {
        "familyName": "Javidi", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Fournel", 
        "givenName": "Thierry", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-7380-1_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-7379-5", 
        "978-1-4419-7380-1"
      ], 
      "name": "Information Optics and Photonics", 
      "type": "Book"
    }, 
    "name": "Liquid Crystal Light-Valves for Slow-Light and Applications", 
    "pagination": "39-54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050061349"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-7380-1_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee7a07cf68942ac576742e5066f3ae365211a61fddae3b0a1379ce5a3d28f528"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-7380-1_3", 
      "https://app.dimensions.ai/details/publication/pub.1050061349"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70028_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4419-7380-1_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7380-1_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7380-1_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7380-1_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-7380-1_3'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      47 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-7380-1_3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nd94cf3c1b82946a78a62e20e8bed6b28
4 schema:citation sg:pub.10.1007/b106782
5 sg:pub.10.1038/17561
6 sg:pub.10.1038/nphoton.2008.147
7 https://doi.org/10.1016/j.crhy.2009.09.003
8 https://doi.org/10.1063/1.881806
9 https://doi.org/10.1103/physreva.79.053835
10 https://doi.org/10.1103/physrevlett.100.203603
11 https://doi.org/10.1103/physrevlett.74.2447
12 https://doi.org/10.1103/physrevlett.90.113903
13 https://doi.org/10.1103/physrevlett.91.083902
14 https://doi.org/10.1103/physrevlett.93.133903
15 https://doi.org/10.1103/physrevlett.93.243604
16 https://doi.org/10.1103/physrevlett.94.153902
17 https://doi.org/10.1103/physrevlett.99.023901
18 https://doi.org/10.1166/jhs.2009.1016
19 https://doi.org/10.1364/ao.21.003706
20 https://doi.org/10.1364/ao.43.001167
21 https://doi.org/10.1364/ol.22.001855
22 https://doi.org/10.1364/ol.31.002166
23 https://doi.org/10.1364/ol.32.000915
24 https://doi.org/10.1364/ol.34.002006
25 schema:datePublished 2010-10-01
26 schema:datePublishedReg 2010-10-01
27 schema:description By performing two-wave mixing experiments in a liquid crystal light valve we obtain slow and fast-light effects with a deceleration of light pulses down to group velocities as small as a few tenths of mm/s. The wave-mixing process is characterized by the presence of multiple-order output beams, each experiencing a different group delay. On each output order, the group delay can be controlled by changing the frequency detuning between the pump and probe as well as by varying the external voltage applied to the light-valve. The large group delay provided by the beam coupling in the light-valve corresponds to a large group index, which, on the other hand, is associated to a narrow frequency bandwidth of the two-wave-mixing gain. These properties can be used to realize applications in high precision interferometry and adaptive holography, with systems that allows the detection of subpicometer displacements.
28 schema:editor Nd5fd42ceee854ab2b4d542f1749a758c
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N917dffb3011a4815bd8a208810c13332
33 schema:name Liquid Crystal Light-Valves for Slow-Light and Applications
34 schema:pagination 39-54
35 schema:productId N104a9deddf1447c892bb6456885b7949
36 N5e05e7e89f664f2a995ed378b56ea13d
37 Nf812f44229474da49ff4dc5decaa266f
38 schema:publisher Nc823a10fa50a49d880b78959e0b3d5ad
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061349
40 https://doi.org/10.1007/978-1-4419-7380-1_3
41 schema:sdDatePublished 2019-04-16T08:21
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nbd64276839a74f0a8ede44bc7867ff32
44 schema:url https://link.springer.com/10.1007%2F978-1-4419-7380-1_3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N104a9deddf1447c892bb6456885b7949 schema:name readcube_id
49 schema:value ee7a07cf68942ac576742e5066f3ae365211a61fddae3b0a1379ce5a3d28f528
50 rdf:type schema:PropertyValue
51 N2c328d60d1d84c9b8f047207d44e389f schema:familyName Javidi
52 schema:givenName Bahram
53 rdf:type schema:Person
54 N5e05e7e89f664f2a995ed378b56ea13d schema:name dimensions_id
55 schema:value pub.1050061349
56 rdf:type schema:PropertyValue
57 N861d081b3b9646c2989b715c2444d8ec rdf:first Nc68c6762d03f4122a2cf5611b193d929
58 rdf:rest rdf:nil
59 N917dffb3011a4815bd8a208810c13332 schema:isbn 978-1-4419-7379-5
60 978-1-4419-7380-1
61 schema:name Information Optics and Photonics
62 rdf:type schema:Book
63 Naa549d60a44f46fb9a38c6329f012dee rdf:first sg:person.01361016337.22
64 rdf:rest Nea6b507e58634c819ae0a1a49dd1398a
65 Nbd64276839a74f0a8ede44bc7867ff32 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nc68c6762d03f4122a2cf5611b193d929 schema:familyName Fournel
68 schema:givenName Thierry
69 rdf:type schema:Person
70 Nc823a10fa50a49d880b78959e0b3d5ad schema:location New York, NY
71 schema:name Springer New York
72 rdf:type schema:Organisation
73 Nd5fd42ceee854ab2b4d542f1749a758c rdf:first N2c328d60d1d84c9b8f047207d44e389f
74 rdf:rest N861d081b3b9646c2989b715c2444d8ec
75 Nd94cf3c1b82946a78a62e20e8bed6b28 rdf:first sg:person.01105210140.66
76 rdf:rest Naa549d60a44f46fb9a38c6329f012dee
77 Nea6b507e58634c819ae0a1a49dd1398a rdf:first sg:person.0637660512.00
78 rdf:rest rdf:nil
79 Nf812f44229474da49ff4dc5decaa266f schema:name doi
80 schema:value 10.1007/978-1-4419-7380-1_3
81 rdf:type schema:PropertyValue
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
86 schema:name Other Physical Sciences
87 rdf:type schema:DefinedTerm
88 sg:person.01105210140.66 schema:affiliation https://www.grid.ac/institutes/grid.410363.3
89 schema:familyName Bortolozzo
90 schema:givenName U.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105210140.66
92 rdf:type schema:Person
93 sg:person.01361016337.22 schema:affiliation https://www.grid.ac/institutes/grid.410363.3
94 schema:familyName Residori
95 schema:givenName S.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361016337.22
97 rdf:type schema:Person
98 sg:person.0637660512.00 schema:affiliation https://www.grid.ac/institutes/grid.410363.3
99 schema:familyName Huignard
100 schema:givenName J.-P.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637660512.00
102 rdf:type schema:Person
103 sg:pub.10.1007/b106782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033516849
104 https://doi.org/10.1007/b106782
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/17561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042899196
107 https://doi.org/10.1038/17561
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nphoton.2008.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027939919
110 https://doi.org/10.1038/nphoton.2008.147
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.crhy.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020429073
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.881806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127292
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreva.79.053835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505806
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.100.203603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753486
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.74.2447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810647
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.90.113903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826452
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.91.083902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827128
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.93.133903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829040
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.93.243604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829508
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.94.153902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830199
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.99.023901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009480576
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1166/jhs.2009.1016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016490300
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1364/ao.21.003706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065097779
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1364/ao.43.001167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065118821
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1364/ol.22.001855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217717
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1364/ol.31.002166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224065
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1364/ol.32.000915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224779
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1364/ol.34.002006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227387
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.410363.3 schema:alternateName Thales Group (France)
149 schema:name Thales Research and Technology, 1 Avenue A. Fresnel, 91767, Palaiseau, France
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...