Genome-Wide EST Data Mining Approaches to Resolving Incongruence of Molecular Phylogenies View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010-08-09

AUTHORS

Yunfeng Shan , Robin Gras

ABSTRACT

Thirty-six single genes of 6 plants inferred 18 unique trees using maximum parsimony. Such incongruence is an important challenge. How to reconstruct the congruent tree is still one of the most challenges in molecular phylogenetics. For resolving this problem, a genome-wide EST data mining approach was systematically investigated by retrieving a large size of EST data of 144 shared genes of 6 green plants from GenBank. The results show that the concatenated alignments approach overcame incongruence among single-gene phylogenies and successfully reconstructed the congruent tree of 6 species with 100% jackknife support across each branch when 144 genes was used. Jackknife supports of correct branches increased with number of genes linearly, but the number of wrong branches also increased linearly. For inferring the congruent tree, a minimum of 30 genes were required. This approach may provide potential power in resolving conflictions of phylogenies. More... »

PAGES

237-243

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27

DOI

http://dx.doi.org/10.1007/978-1-4419-5913-3_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048911725

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20865506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shan", 
        "givenName": "Yunfeng", 
        "id": "sg:person.01117605123.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117605123.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gras", 
        "givenName": "Robin", 
        "id": "sg:person.0712313416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-08-09", 
    "datePublishedReg": "2010-08-09", 
    "description": "Thirty-six single genes of 6 plants inferred 18 unique trees using maximum parsimony. Such incongruence is an important challenge. How to reconstruct the congruent tree is still one of the most challenges in molecular phylogenetics. For resolving this problem, a genome-wide EST data mining approach was systematically investigated by retrieving a large size of EST data of 144 shared genes of 6 green plants from GenBank. The results show that the concatenated alignments approach overcame incongruence among single-gene phylogenies and successfully reconstructed the congruent tree of 6 species with 100% jackknife support across each branch when 144 genes was used. Jackknife supports of correct branches increased with number of genes linearly, but the number of wrong branches also increased linearly. For inferring the congruent tree, a minimum of 30 genes were required. This approach may provide potential power in resolving conflictions of phylogenies.", 
    "editor": [
      {
        "familyName": "Arabnia", 
        "givenName": "Hamid R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-5913-3_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-5912-6", 
        "978-1-4419-5913-3"
      ], 
      "name": "Advances in Computational Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "congruent trees", 
      "single-gene phylogenies", 
      "number of genes", 
      "EST data mining", 
      "molecular phylogenetics", 
      "molecular phylogeny", 
      "EST data", 
      "green plants", 
      "single gene", 
      "maximum parsimony", 
      "jackknife support", 
      "such incongruence", 
      "phylogeny", 
      "genes", 
      "plants", 
      "unique tree", 
      "trees", 
      "incongruence", 
      "phylogenetics", 
      "GenBank", 
      "wrong branches", 
      "parsimony", 
      "large size", 
      "species", 
      "branches", 
      "number", 
      "potential power", 
      "important challenge", 
      "alignment approach", 
      "jackknife", 
      "size", 
      "approach", 
      "mining approach", 
      "data mining approach", 
      "data", 
      "challenges", 
      "results", 
      "mining", 
      "correct branch", 
      "data mining", 
      "support", 
      "most challenges", 
      "minimum", 
      "power", 
      "problem", 
      "confliction", 
      "wide EST data mining approach", 
      "EST data mining approach", 
      "conflictions of phylogenies", 
      "Genome-Wide EST Data Mining", 
      "Resolving Incongruence"
    ], 
    "name": "Genome-Wide EST Data Mining Approaches to Resolving Incongruence of Molecular Phylogenies", 
    "pagination": "237-243", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048911725"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-5913-3_27"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20865506"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-5913-3_27", 
      "https://app.dimensions.ai/details/publication/pub.1048911725"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_312.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4419-5913-3_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      84 URIs      78 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-5913-3_27 schema:about N395fec94d4814a43ac30deb811cce0ac
2 N3e87366ab6834b3fa0198ce3f9b397c4
3 N4880563acf6f43ba812c28e8b4278c3d
4 N80356b0c0a5e4a70804da24dd8d73ba8
5 N89de1dedb9ce4ca0833713acc71c0cea
6 Naa932a402498421496928f93cf21e694
7 Nc7dfa1328baf453588ca695009a51733
8 Neb4f389e8edc431b83f9388559b84936
9 anzsrc-for:11
10 schema:author N40b3f945f6584c2aa364ad1a4ab67def
11 schema:datePublished 2010-08-09
12 schema:datePublishedReg 2010-08-09
13 schema:description Thirty-six single genes of 6 plants inferred 18 unique trees using maximum parsimony. Such incongruence is an important challenge. How to reconstruct the congruent tree is still one of the most challenges in molecular phylogenetics. For resolving this problem, a genome-wide EST data mining approach was systematically investigated by retrieving a large size of EST data of 144 shared genes of 6 green plants from GenBank. The results show that the concatenated alignments approach overcame incongruence among single-gene phylogenies and successfully reconstructed the congruent tree of 6 species with 100% jackknife support across each branch when 144 genes was used. Jackknife supports of correct branches increased with number of genes linearly, but the number of wrong branches also increased linearly. For inferring the congruent tree, a minimum of 30 genes were required. This approach may provide potential power in resolving conflictions of phylogenies.
14 schema:editor N08ee0944d55241799d6fb9f17c6e3cd9
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf Nbd8d38d8bc0a47948d95181c4c15f86d
19 schema:keywords EST data
20 EST data mining
21 EST data mining approach
22 GenBank
23 Genome-Wide EST Data Mining
24 Resolving Incongruence
25 alignment approach
26 approach
27 branches
28 challenges
29 confliction
30 conflictions of phylogenies
31 congruent trees
32 correct branch
33 data
34 data mining
35 data mining approach
36 genes
37 green plants
38 important challenge
39 incongruence
40 jackknife
41 jackknife support
42 large size
43 maximum parsimony
44 minimum
45 mining
46 mining approach
47 molecular phylogenetics
48 molecular phylogeny
49 most challenges
50 number
51 number of genes
52 parsimony
53 phylogenetics
54 phylogeny
55 plants
56 potential power
57 power
58 problem
59 results
60 single gene
61 single-gene phylogenies
62 size
63 species
64 such incongruence
65 support
66 trees
67 unique tree
68 wide EST data mining approach
69 wrong branches
70 schema:name Genome-Wide EST Data Mining Approaches to Resolving Incongruence of Molecular Phylogenies
71 schema:pagination 237-243
72 schema:productId N0782f7b10ec34b37834e1520696db497
73 N96734108679a4822873fb2cc68fb0c77
74 Ned6b4fdfb0c84c9fa24da6ad744fba95
75 schema:publisher N21851c47d4ee45a7b8cbd1d91ed911d6
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048911725
77 https://doi.org/10.1007/978-1-4419-5913-3_27
78 schema:sdDatePublished 2021-12-01T20:04
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N8f91b162142c43e4bc10842824d20535
81 schema:url https://doi.org/10.1007/978-1-4419-5913-3_27
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N0782f7b10ec34b37834e1520696db497 schema:name pubmed_id
86 schema:value 20865506
87 rdf:type schema:PropertyValue
88 N08ee0944d55241799d6fb9f17c6e3cd9 rdf:first Nb1c670502d07458d9fb5e6fdefc806ad
89 rdf:rest rdf:nil
90 N21851c47d4ee45a7b8cbd1d91ed911d6 schema:name Springer Nature
91 rdf:type schema:Organisation
92 N395fec94d4814a43ac30deb811cce0ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Databases, Genetic
94 rdf:type schema:DefinedTerm
95 N3e87366ab6834b3fa0198ce3f9b397c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Plants
97 rdf:type schema:DefinedTerm
98 N40b3f945f6584c2aa364ad1a4ab67def rdf:first sg:person.01117605123.20
99 rdf:rest Nd641f8b751974948b7d0454adf9ce58d
100 N4880563acf6f43ba812c28e8b4278c3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Phylogeny
102 rdf:type schema:DefinedTerm
103 N80356b0c0a5e4a70804da24dd8d73ba8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Data Mining
105 rdf:type schema:DefinedTerm
106 N89de1dedb9ce4ca0833713acc71c0cea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Expressed Sequence Tags
108 rdf:type schema:DefinedTerm
109 N8f91b162142c43e4bc10842824d20535 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N96734108679a4822873fb2cc68fb0c77 schema:name doi
112 schema:value 10.1007/978-1-4419-5913-3_27
113 rdf:type schema:PropertyValue
114 Naa932a402498421496928f93cf21e694 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Computational Biology
116 rdf:type schema:DefinedTerm
117 Nb1c670502d07458d9fb5e6fdefc806ad schema:familyName Arabnia
118 schema:givenName Hamid R.
119 rdf:type schema:Person
120 Nbd8d38d8bc0a47948d95181c4c15f86d schema:isbn 978-1-4419-5912-6
121 978-1-4419-5913-3
122 schema:name Advances in Computational Biology
123 rdf:type schema:Book
124 Nc7dfa1328baf453588ca695009a51733 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Algorithms
126 rdf:type schema:DefinedTerm
127 Nd641f8b751974948b7d0454adf9ce58d rdf:first sg:person.0712313416.43
128 rdf:rest rdf:nil
129 Neb4f389e8edc431b83f9388559b84936 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Genome, Plant
131 rdf:type schema:DefinedTerm
132 Ned6b4fdfb0c84c9fa24da6ad744fba95 schema:name dimensions_id
133 schema:value pub.1048911725
134 rdf:type schema:PropertyValue
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 sg:person.01117605123.20 schema:affiliation grid-institutes:grid.267455.7
139 schema:familyName Shan
140 schema:givenName Yunfeng
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117605123.20
142 rdf:type schema:Person
143 sg:person.0712313416.43 schema:familyName Gras
144 schema:givenName Robin
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43
146 rdf:type schema:Person
147 grid-institutes:grid.267455.7 schema:alternateName School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada
148 schema:name School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...