Genome-Wide EST Data Mining Approaches to Resolving Incongruence of Molecular Phylogenies View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010-08-09

AUTHORS

Yunfeng Shan , Robin Gras

ABSTRACT

Thirty-six single genes of 6 plants inferred 18 unique trees using maximum parsimony. Such incongruence is an important challenge. How to reconstruct the congruent tree is still one of the most challenges in molecular phylogenetics. For resolving this problem, a genome-wide EST data mining approach was systematically investigated by retrieving a large size of EST data of 144 shared genes of 6 green plants from GenBank. The results show that the concatenated alignments approach overcame incongruence among single-gene phylogenies and successfully reconstructed the congruent tree of 6 species with 100% jackknife support across each branch when 144 genes was used. Jackknife supports of correct branches increased with number of genes linearly, but the number of wrong branches also increased linearly. For inferring the congruent tree, a minimum of 30 genes were required. This approach may provide potential power in resolving conflictions of phylogenies. More... »

PAGES

237-243

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27

DOI

http://dx.doi.org/10.1007/978-1-4419-5913-3_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048911725

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20865506


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Mining", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Expressed Sequence Tags", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shan", 
        "givenName": "Yunfeng", 
        "id": "sg:person.01117605123.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117605123.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gras", 
        "givenName": "Robin", 
        "id": "sg:person.0712313416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-08-09", 
    "datePublishedReg": "2010-08-09", 
    "description": "Thirty-six single genes of 6 plants inferred 18 unique trees using maximum parsimony. Such incongruence is an important challenge. How to reconstruct the congruent tree is still one of the most challenges in molecular phylogenetics. For resolving this problem, a genome-wide EST data mining approach was systematically investigated by retrieving a large size of EST data of 144 shared genes of 6 green plants from GenBank. The results show that the concatenated alignments approach overcame incongruence among single-gene phylogenies and successfully reconstructed the congruent tree of 6 species with 100% jackknife support across each branch when 144 genes was used. Jackknife supports of correct branches increased with number of genes linearly, but the number of wrong branches also increased linearly. For inferring the congruent tree, a minimum of 30 genes were required. This approach may provide potential power in resolving conflictions of phylogenies.", 
    "editor": [
      {
        "familyName": "Arabnia", 
        "givenName": "Hamid R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-5913-3_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-5912-6", 
        "978-1-4419-5913-3"
      ], 
      "name": "Advances in Computational Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "congruent trees", 
      "single-gene phylogenies", 
      "number of genes", 
      "EST data mining", 
      "molecular phylogenetics", 
      "molecular phylogeny", 
      "EST data", 
      "green plants", 
      "single gene", 
      "maximum parsimony", 
      "jackknife support", 
      "such incongruence", 
      "phylogeny", 
      "genes", 
      "plants", 
      "unique tree", 
      "trees", 
      "incongruence", 
      "phylogenetics", 
      "GenBank", 
      "wrong branches", 
      "parsimony", 
      "large size", 
      "species", 
      "branches", 
      "number", 
      "potential power", 
      "important challenge", 
      "alignment approach", 
      "jackknife", 
      "size", 
      "approach", 
      "mining approach", 
      "data mining approach", 
      "data", 
      "challenges", 
      "results", 
      "mining", 
      "correct branch", 
      "data mining", 
      "support", 
      "most challenges", 
      "minimum", 
      "power", 
      "problem", 
      "confliction", 
      "wide EST data mining approach", 
      "EST data mining approach", 
      "conflictions of phylogenies", 
      "Genome-Wide EST Data Mining", 
      "Resolving Incongruence"
    ], 
    "name": "Genome-Wide EST Data Mining Approaches to Resolving Incongruence of Molecular Phylogenies", 
    "pagination": "237-243", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048911725"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-5913-3_27"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20865506"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-5913-3_27", 
      "https://app.dimensions.ai/details/publication/pub.1048911725"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_16.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4419-5913-3_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-5913-3_27'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      84 URIs      78 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-5913-3_27 schema:about N7daa6fc9cd10452b8e5e437e5cbb64ac
2 N8bec1c8836f44f46845b2228fb3b8784
3 N91813482ed384fa1b95b45afa2114955
4 Nbc25801ea3b843959b62be6d638d6b0a
5 Ncba5016a7d94482fa6e159c930b07c25
6 Nde4b6d04e696451bb1469ad97e1a1bc8
7 Ne53da856645e4e9da89227916246f144
8 Nea51a201f08f40c7bd5d2fc4b4afc343
9 anzsrc-for:11
10 schema:author Nf82abfa777ea4b8f8871f28a6d132f0b
11 schema:datePublished 2010-08-09
12 schema:datePublishedReg 2010-08-09
13 schema:description Thirty-six single genes of 6 plants inferred 18 unique trees using maximum parsimony. Such incongruence is an important challenge. How to reconstruct the congruent tree is still one of the most challenges in molecular phylogenetics. For resolving this problem, a genome-wide EST data mining approach was systematically investigated by retrieving a large size of EST data of 144 shared genes of 6 green plants from GenBank. The results show that the concatenated alignments approach overcame incongruence among single-gene phylogenies and successfully reconstructed the congruent tree of 6 species with 100% jackknife support across each branch when 144 genes was used. Jackknife supports of correct branches increased with number of genes linearly, but the number of wrong branches also increased linearly. For inferring the congruent tree, a minimum of 30 genes were required. This approach may provide potential power in resolving conflictions of phylogenies.
14 schema:editor Ncf520ba0a2fd40dea088c6060707db3e
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf Nbf237ab41300456da9d5b9f858f1a97a
19 schema:keywords EST data
20 EST data mining
21 EST data mining approach
22 GenBank
23 Genome-Wide EST Data Mining
24 Resolving Incongruence
25 alignment approach
26 approach
27 branches
28 challenges
29 confliction
30 conflictions of phylogenies
31 congruent trees
32 correct branch
33 data
34 data mining
35 data mining approach
36 genes
37 green plants
38 important challenge
39 incongruence
40 jackknife
41 jackknife support
42 large size
43 maximum parsimony
44 minimum
45 mining
46 mining approach
47 molecular phylogenetics
48 molecular phylogeny
49 most challenges
50 number
51 number of genes
52 parsimony
53 phylogenetics
54 phylogeny
55 plants
56 potential power
57 power
58 problem
59 results
60 single gene
61 single-gene phylogenies
62 size
63 species
64 such incongruence
65 support
66 trees
67 unique tree
68 wide EST data mining approach
69 wrong branches
70 schema:name Genome-Wide EST Data Mining Approaches to Resolving Incongruence of Molecular Phylogenies
71 schema:pagination 237-243
72 schema:productId N24c516da5791475eb8d05238917e2028
73 N3fa6c05e1dc348cea67bec6e9e482808
74 Nfb3f4826c789453b9aab1ab31ad26b36
75 schema:publisher N0a1d987646b14c5f8e5e88936d6acf47
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048911725
77 https://doi.org/10.1007/978-1-4419-5913-3_27
78 schema:sdDatePublished 2022-01-01T19:09
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N398401caf67846e5beec96906ab6d905
81 schema:url https://doi.org/10.1007/978-1-4419-5913-3_27
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N0a1d987646b14c5f8e5e88936d6acf47 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N24c516da5791475eb8d05238917e2028 schema:name dimensions_id
88 schema:value pub.1048911725
89 rdf:type schema:PropertyValue
90 N398401caf67846e5beec96906ab6d905 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N3fa6c05e1dc348cea67bec6e9e482808 schema:name doi
93 schema:value 10.1007/978-1-4419-5913-3_27
94 rdf:type schema:PropertyValue
95 N7daa6fc9cd10452b8e5e437e5cbb64ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Algorithms
97 rdf:type schema:DefinedTerm
98 N8bec1c8836f44f46845b2228fb3b8784 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Computational Biology
100 rdf:type schema:DefinedTerm
101 N916bf5a2a2954c3fb92d5bf6f15bc89a schema:familyName Arabnia
102 schema:givenName Hamid R.
103 rdf:type schema:Person
104 N91813482ed384fa1b95b45afa2114955 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Data Mining
106 rdf:type schema:DefinedTerm
107 Nbc25801ea3b843959b62be6d638d6b0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Phylogeny
109 rdf:type schema:DefinedTerm
110 Nbf237ab41300456da9d5b9f858f1a97a schema:isbn 978-1-4419-5912-6
111 978-1-4419-5913-3
112 schema:name Advances in Computational Biology
113 rdf:type schema:Book
114 Ncba5016a7d94482fa6e159c930b07c25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Databases, Genetic
116 rdf:type schema:DefinedTerm
117 Ncf520ba0a2fd40dea088c6060707db3e rdf:first N916bf5a2a2954c3fb92d5bf6f15bc89a
118 rdf:rest rdf:nil
119 Nde4b6d04e696451bb1469ad97e1a1bc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Plants
121 rdf:type schema:DefinedTerm
122 Ne53da856645e4e9da89227916246f144 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Expressed Sequence Tags
124 rdf:type schema:DefinedTerm
125 Ne63597e747564e96be4795295845af9a rdf:first sg:person.0712313416.43
126 rdf:rest rdf:nil
127 Nea51a201f08f40c7bd5d2fc4b4afc343 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Genome, Plant
129 rdf:type schema:DefinedTerm
130 Nf82abfa777ea4b8f8871f28a6d132f0b rdf:first sg:person.01117605123.20
131 rdf:rest Ne63597e747564e96be4795295845af9a
132 Nfb3f4826c789453b9aab1ab31ad26b36 schema:name pubmed_id
133 schema:value 20865506
134 rdf:type schema:PropertyValue
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 sg:person.01117605123.20 schema:affiliation grid-institutes:grid.267455.7
139 schema:familyName Shan
140 schema:givenName Yunfeng
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117605123.20
142 rdf:type schema:Person
143 sg:person.0712313416.43 schema:familyName Gras
144 schema:givenName Robin
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712313416.43
146 rdf:type schema:Person
147 grid-institutes:grid.267455.7 schema:alternateName School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada
148 schema:name School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...