Iron–Sulfur Clusters in “Radical SAM” Enzymes: Spectroscopy and Coordination View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-10-20

AUTHORS

Serge Gambarelli , Etienne Mulliez , Marc Fontecave

ABSTRACT

There is increasing evidence for the versatility of the coordination of iron–sulfur clusters in biology. In addition to cysteine residues as the most favored ligand and providing sulfur coordination, oxygenbased (aspartate, tyrosinate …) and nitrogen-based (histidine, arginine …) residues have also been observed as ligands to the clusters. Furthermore, low-molecular-weight substrates (citrate in the case of aconitase) and cofactors (S-adenosylmethionine, SAM, in the case of “Radical SAM” enzymes) have been shown to bind to one of the iron atoms of the [4Fe–4S] clusters where they are then activated. In this chapter we discuss the potential as well as the limitations of ENDOR and HYSCORE spectroscopy for characterizing metalloprotein coordination and, more specifically, the cluster–SAM complexes that are essential intermediates in pyruvate formate lyase-activating enzyme, lysine 2,3 aminomutase, and ribonucleotide reductase activating enzyme. These three systems are prototypes for the “Radical SAM” enzyme superfamily, whose chemistry seems to be extensively utilized in the metabolism of all living organisms. More... »

PAGES

53-82

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-1139-1_4

DOI

http://dx.doi.org/10.1007/978-1-4419-1139-1_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037461116


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Service de Chimie Inorganique et Biologique, INAC/SCIB, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble cedex 9, France", 
          "id": "http://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "Service de Chimie Inorganique et Biologique, INAC/SCIB, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gambarelli", 
        "givenName": "Serge", 
        "id": "sg:person.01305421564.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305421564.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Chimie et Biochimie des M\u00e9taux, CNRSCEA-Universit\u00e9 Joseph Fourier n\u00b0 5249, iRTSV/LCBM, CEA-Grenoble, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "Laboratoire de Chimie et Biochimie des M\u00e9taux, CNRSCEA-Universit\u00e9 Joseph Fourier n\u00b0 5249, iRTSV/LCBM, CEA-Grenoble, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mulliez", 
        "givenName": "Etienne", 
        "id": "sg:person.0651501541.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651501541.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Chimie et Biochimie des M\u00e9taux, CNRSCEA-Universit\u00e9 Joseph Fourier n\u00b0 5249, iRTSV/LCBM, CEA-Grenoble, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "Laboratoire de Chimie et Biochimie des M\u00e9taux, CNRSCEA-Universit\u00e9 Joseph Fourier n\u00b0 5249, iRTSV/LCBM, CEA-Grenoble, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontecave", 
        "givenName": "Marc", 
        "id": "sg:person.0765730141.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765730141.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-10-20", 
    "datePublishedReg": "2009-10-20", 
    "description": "There is increasing evidence for the versatility of the coordination of iron\u2013sulfur clusters in biology. In addition to cysteine residues as the most favored ligand and providing sulfur coordination, oxygenbased (aspartate, tyrosinate \u2026) and nitrogen-based (histidine, arginine \u2026) residues have also been observed as ligands to the clusters. Furthermore, low-molecular-weight substrates (citrate in the case of aconitase) and cofactors (S-adenosylmethionine, SAM, in the case of \u201cRadical SAM\u201d enzymes) have been shown to bind to one of the iron atoms of the [4Fe\u20134S] clusters where they are then activated. In this chapter we discuss the potential as well as the limitations of ENDOR and HYSCORE spectroscopy for characterizing metalloprotein coordination and, more specifically, the cluster\u2013SAM complexes that are essential intermediates in pyruvate formate lyase-activating enzyme, lysine 2,3 aminomutase, and ribonucleotide reductase activating enzyme. These three systems are prototypes for the \u201cRadical SAM\u201d enzyme superfamily, whose chemistry seems to be extensively utilized in the metabolism of all living organisms.", 
    "editor": [
      {
        "familyName": "Hanson", 
        "givenName": "Graeme", 
        "type": "Person"
      }, 
      {
        "familyName": "Berliner", 
        "givenName": "Lawrence", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-1139-1_4", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-1138-4", 
        "978-1-4419-1139-1"
      ], 
      "name": "Metals in Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "iron-sulfur clusters", 
      "radical SAM", 
      "HYSCORE spectroscopy", 
      "sulfur coordination", 
      "iron atoms", 
      "essential intermediate", 
      "weight substrates", 
      "spectroscopy", 
      "ligands", 
      "activating enzyme", 
      "coordination", 
      "enzyme", 
      "SAM", 
      "chemistry", 
      "ENDOR", 
      "residues", 
      "aminomutase", 
      "intermediates", 
      "atoms", 
      "complexes", 
      "clusters", 
      "organisms", 
      "biology", 
      "versatility", 
      "cofactor", 
      "substrate", 
      "lysine", 
      "metabolism", 
      "potential", 
      "addition", 
      "evidence", 
      "chapter", 
      "system", 
      "limitations", 
      "prototype"
    ], 
    "name": "Iron\u2013Sulfur Clusters in \u201cRadical SAM\u201d Enzymes: Spectroscopy and Coordination", 
    "pagination": "53-82", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037461116"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-1139-1_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-1139-1_4", 
      "https://app.dimensions.ai/details/publication/pub.1037461116"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_230.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4419-1139-1_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-1139-1_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-1139-1_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-1139-1_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-1139-1_4'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      22 PREDICATES      60 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-1139-1_4 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:06
4 anzsrc-for:0601
5 schema:author N837ec933a2424ff2b83612f65bfe2481
6 schema:datePublished 2009-10-20
7 schema:datePublishedReg 2009-10-20
8 schema:description There is increasing evidence for the versatility of the coordination of iron–sulfur clusters in biology. In addition to cysteine residues as the most favored ligand and providing sulfur coordination, oxygenbased (aspartate, tyrosinate …) and nitrogen-based (histidine, arginine …) residues have also been observed as ligands to the clusters. Furthermore, low-molecular-weight substrates (citrate in the case of aconitase) and cofactors (S-adenosylmethionine, SAM, in the case of “Radical SAM” enzymes) have been shown to bind to one of the iron atoms of the [4Fe–4S] clusters where they are then activated. In this chapter we discuss the potential as well as the limitations of ENDOR and HYSCORE spectroscopy for characterizing metalloprotein coordination and, more specifically, the cluster–SAM complexes that are essential intermediates in pyruvate formate lyase-activating enzyme, lysine 2,3 aminomutase, and ribonucleotide reductase activating enzyme. These three systems are prototypes for the “Radical SAM” enzyme superfamily, whose chemistry seems to be extensively utilized in the metabolism of all living organisms.
9 schema:editor N8e5d216e6226485e81cdb18f34ea60b9
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf N747d053b21174e9fa22b653a6569c2e3
13 schema:keywords ENDOR
14 HYSCORE spectroscopy
15 SAM
16 activating enzyme
17 addition
18 aminomutase
19 atoms
20 biology
21 chapter
22 chemistry
23 clusters
24 cofactor
25 complexes
26 coordination
27 enzyme
28 essential intermediate
29 evidence
30 intermediates
31 iron atoms
32 iron-sulfur clusters
33 ligands
34 limitations
35 lysine
36 metabolism
37 organisms
38 potential
39 prototype
40 radical SAM
41 residues
42 spectroscopy
43 substrate
44 sulfur coordination
45 system
46 versatility
47 weight substrates
48 schema:name Iron–Sulfur Clusters in “Radical SAM” Enzymes: Spectroscopy and Coordination
49 schema:pagination 53-82
50 schema:productId N8639f5d496c84285b67ccd8e3f3f2262
51 Nc5a4433100ab4f60850dd653196c36b3
52 schema:publisher Ndc046f2933cd44cb931f062c0f54730b
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037461116
54 https://doi.org/10.1007/978-1-4419-1139-1_4
55 schema:sdDatePublished 2022-11-24T21:14
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N76b667c6f0e34ae1806d0e7e44c5c4b9
58 schema:url https://doi.org/10.1007/978-1-4419-1139-1_4
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N05b27661b85c4ce4b1fa8f98e6bf952c schema:familyName Berliner
63 schema:givenName Lawrence
64 rdf:type schema:Person
65 N410945744bae466b9cb543ba315ec07e rdf:first sg:person.0651501541.76
66 rdf:rest N6fe5415527564e15ae4ca17adc8eef01
67 N4e8d4664e97246818266f1323abc8c1e rdf:first N05b27661b85c4ce4b1fa8f98e6bf952c
68 rdf:rest rdf:nil
69 N6fe5415527564e15ae4ca17adc8eef01 rdf:first sg:person.0765730141.41
70 rdf:rest rdf:nil
71 N747d053b21174e9fa22b653a6569c2e3 schema:isbn 978-1-4419-1138-4
72 978-1-4419-1139-1
73 schema:name Metals in Biology
74 rdf:type schema:Book
75 N76b667c6f0e34ae1806d0e7e44c5c4b9 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N837ec933a2424ff2b83612f65bfe2481 rdf:first sg:person.01305421564.29
78 rdf:rest N410945744bae466b9cb543ba315ec07e
79 N8639f5d496c84285b67ccd8e3f3f2262 schema:name doi
80 schema:value 10.1007/978-1-4419-1139-1_4
81 rdf:type schema:PropertyValue
82 N8e5d216e6226485e81cdb18f34ea60b9 rdf:first Nef2bf61133464f3d9ffd2fa1495a6857
83 rdf:rest N4e8d4664e97246818266f1323abc8c1e
84 Nc5a4433100ab4f60850dd653196c36b3 schema:name dimensions_id
85 schema:value pub.1037461116
86 rdf:type schema:PropertyValue
87 Ndc046f2933cd44cb931f062c0f54730b schema:name Springer Nature
88 rdf:type schema:Organisation
89 Nef2bf61133464f3d9ffd2fa1495a6857 schema:familyName Hanson
90 schema:givenName Graeme
91 rdf:type schema:Person
92 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
96 schema:name Inorganic Chemistry
97 rdf:type schema:DefinedTerm
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biochemistry and Cell Biology
103 rdf:type schema:DefinedTerm
104 sg:person.01305421564.29 schema:affiliation grid-institutes:grid.457348.9
105 schema:familyName Gambarelli
106 schema:givenName Serge
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305421564.29
108 rdf:type schema:Person
109 sg:person.0651501541.76 schema:affiliation grid-institutes:grid.457348.9
110 schema:familyName Mulliez
111 schema:givenName Etienne
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651501541.76
113 rdf:type schema:Person
114 sg:person.0765730141.41 schema:affiliation grid-institutes:grid.457348.9
115 schema:familyName Fontecave
116 schema:givenName Marc
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765730141.41
118 rdf:type schema:Person
119 grid-institutes:grid.457348.9 schema:alternateName Laboratoire de Chimie et Biochimie des Métaux, CNRSCEA-Université Joseph Fourier n° 5249, iRTSV/LCBM, CEA-Grenoble, Grenoble, France
120 Service de Chimie Inorganique et Biologique, INAC/SCIB, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble cedex 9, France
121 schema:name Laboratoire de Chimie et Biochimie des Métaux, CNRSCEA-Université Joseph Fourier n° 5249, iRTSV/LCBM, CEA-Grenoble, Grenoble, France
122 Service de Chimie Inorganique et Biologique, INAC/SCIB, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble cedex 9, France
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...