Representation of Materials Constitutive Responses in Finite Element-Based Design Codes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-11-10

AUTHORS

Yoon Suk Choi , Robert A. A. Brockman

ABSTRACT

Finite element analysis codes developed originally for engineering structural analysis and design have been adopted by many investigators for materials science studies, and for development of computational material models on the continuum scale. The variety of modeling tools, solution paths, and utilities for constructing new material models make the commercial finite element codes an attractive environment for material model development. This chapter reviews several commonly used continuum mechanics codes, with emphasis on capabilities for representing important classes of material behaviors. A detailed discussion is presented of modeling anisotropic and heterogeneous material structures using representative volume elements and repeating unit cells, with particular emphasis on metallic and intermetallic engineering materials. The presentation includes numerical representations of microscopic and macroscopic material behaviors, and recent efforts to link the responses at these length scales. Numerical and phenomenological aspects of the development of material constitutive models are discussed. More... »

PAGES

199-238

Book

TITLE

Computational Methods for Microstructure-Property Relationships

ISBN

978-1-4419-0642-7
978-1-4419-0643-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-0643-4_6

DOI

http://dx.doi.org/10.1007/978-1-4419-0643-4_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030822697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universal Energy Systems, Dayton, USA", 
          "id": "http://www.grid.ac/institutes/grid.296952.3", 
          "name": [
            "Universal Energy Systems, Dayton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Yoon Suk", 
        "type": "Person"
      }, 
      {
        "familyName": "Brockman", 
        "givenName": "Robert A. A.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-11-10", 
    "datePublishedReg": "2010-11-10", 
    "description": "Finite element analysis codes developed originally for engineering structural analysis and design have been adopted by many investigators for materials science studies, and for development of computational material models on the continuum scale. The variety of modeling tools, solution paths, and utilities for constructing new material models make the commercial finite element codes an attractive environment for material model development. This chapter reviews several commonly used continuum mechanics codes, with emphasis on capabilities for representing important classes of material behaviors. A detailed discussion is presented of modeling anisotropic and heterogeneous material structures using representative volume elements and repeating unit cells, with particular emphasis on metallic and intermetallic engineering materials. The presentation includes numerical representations of microscopic and macroscopic material behaviors, and recent efforts to link the responses at these length scales. Numerical and phenomenological aspects of the development of material constitutive models are discussed.", 
    "editor": [
      {
        "familyName": "Ghosh", 
        "givenName": "Somnath", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimiduk", 
        "givenName": "Dennis", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-0643-4_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-0642-7", 
        "978-1-4419-0643-4"
      ], 
      "name": "Computational Methods for Microstructure-Property Relationships", 
      "type": "Book"
    }, 
    "keywords": [
      "material model", 
      "material behavior", 
      "finite element analysis code", 
      "finite elements", 
      "heterogeneous material structure", 
      "material model development", 
      "material constitutive model", 
      "new material model", 
      "macroscopic material behavior", 
      "representative volume element", 
      "commercial finite element", 
      "material constitutive response", 
      "computational material models", 
      "continuum mechanics codes", 
      "engineering materials", 
      "constitutive model", 
      "constitutive response", 
      "design codes", 
      "material structure", 
      "continuum scale", 
      "volume element", 
      "materials science studies", 
      "analysis code", 
      "mechanics code", 
      "length scales", 
      "model development", 
      "modeling tools", 
      "unit cell", 
      "structural analysis", 
      "detailed discussion", 
      "behavior", 
      "materials", 
      "numerical representation", 
      "model", 
      "elements", 
      "code", 
      "phenomenological aspects", 
      "design", 
      "capability", 
      "particular emphasis", 
      "recent efforts", 
      "structure", 
      "scale", 
      "path", 
      "development", 
      "important class", 
      "emphasis", 
      "microscopic", 
      "environment", 
      "solution path", 
      "tool", 
      "analysis", 
      "response", 
      "representation", 
      "aspects", 
      "chapter", 
      "efforts", 
      "study", 
      "variety", 
      "utility", 
      "attractive environment", 
      "discussion", 
      "class", 
      "science studies", 
      "cells", 
      "investigators", 
      "presentation", 
      "element analysis codes", 
      "intermetallic engineering materials"
    ], 
    "name": "Representation of Materials Constitutive Responses in Finite Element-Based Design Codes", 
    "pagination": "199-238", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030822697"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-0643-4_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-0643-4_6", 
      "https://app.dimensions.ai/details/publication/pub.1030822697"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_117.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4419-0643-4_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0643-4_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0643-4_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0643-4_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0643-4_6'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      93 URIs      86 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-0643-4_6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc88b4a9bce164e4f8a3c35e6639a10b0
4 schema:datePublished 2010-11-10
5 schema:datePublishedReg 2010-11-10
6 schema:description Finite element analysis codes developed originally for engineering structural analysis and design have been adopted by many investigators for materials science studies, and for development of computational material models on the continuum scale. The variety of modeling tools, solution paths, and utilities for constructing new material models make the commercial finite element codes an attractive environment for material model development. This chapter reviews several commonly used continuum mechanics codes, with emphasis on capabilities for representing important classes of material behaviors. A detailed discussion is presented of modeling anisotropic and heterogeneous material structures using representative volume elements and repeating unit cells, with particular emphasis on metallic and intermetallic engineering materials. The presentation includes numerical representations of microscopic and macroscopic material behaviors, and recent efforts to link the responses at these length scales. Numerical and phenomenological aspects of the development of material constitutive models are discussed.
7 schema:editor Nd4c968ee051e4dec9acb4c4123717675
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nafb1cb0f4d36456ba094d699d62252ec
12 schema:keywords analysis
13 analysis code
14 aspects
15 attractive environment
16 behavior
17 capability
18 cells
19 chapter
20 class
21 code
22 commercial finite element
23 computational material models
24 constitutive model
25 constitutive response
26 continuum mechanics codes
27 continuum scale
28 design
29 design codes
30 detailed discussion
31 development
32 discussion
33 efforts
34 element analysis codes
35 elements
36 emphasis
37 engineering materials
38 environment
39 finite element analysis code
40 finite elements
41 heterogeneous material structure
42 important class
43 intermetallic engineering materials
44 investigators
45 length scales
46 macroscopic material behavior
47 material behavior
48 material constitutive model
49 material constitutive response
50 material model
51 material model development
52 material structure
53 materials
54 materials science studies
55 mechanics code
56 microscopic
57 model
58 model development
59 modeling tools
60 new material model
61 numerical representation
62 particular emphasis
63 path
64 phenomenological aspects
65 presentation
66 recent efforts
67 representation
68 representative volume element
69 response
70 scale
71 science studies
72 solution path
73 structural analysis
74 structure
75 study
76 tool
77 unit cell
78 utility
79 variety
80 volume element
81 schema:name Representation of Materials Constitutive Responses in Finite Element-Based Design Codes
82 schema:pagination 199-238
83 schema:productId N085dc4dcc13147c9975c5c9993682792
84 N4aa10a00e62647828e36f33d2c52e81f
85 schema:publisher N0549c477b64846c59b87131d24427b7b
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030822697
87 https://doi.org/10.1007/978-1-4419-0643-4_6
88 schema:sdDatePublished 2021-12-01T19:55
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N03ec036c5e0640e49fffe9760c4ab1c4
91 schema:url https://doi.org/10.1007/978-1-4419-0643-4_6
92 sgo:license sg:explorer/license/
93 sgo:sdDataset chapters
94 rdf:type schema:Chapter
95 N03ec036c5e0640e49fffe9760c4ab1c4 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N0549c477b64846c59b87131d24427b7b schema:name Springer Nature
98 rdf:type schema:Organisation
99 N085dc4dcc13147c9975c5c9993682792 schema:name dimensions_id
100 schema:value pub.1030822697
101 rdf:type schema:PropertyValue
102 N1b1f0b04d72d473d966204ff21af3f78 schema:familyName Dimiduk
103 schema:givenName Dennis
104 rdf:type schema:Person
105 N4aa10a00e62647828e36f33d2c52e81f schema:name doi
106 schema:value 10.1007/978-1-4419-0643-4_6
107 rdf:type schema:PropertyValue
108 N4e78ef35e77846a695441ef028c7591d rdf:first Nd741818aec5b463ca58eb3505c64fd12
109 rdf:rest rdf:nil
110 N72ff6635d9bb4fcd9d40fdd3b8dff9f0 schema:affiliation grid-institutes:grid.296952.3
111 schema:familyName Choi
112 schema:givenName Yoon Suk
113 rdf:type schema:Person
114 N909849fc45424b948b97edf922e45a71 rdf:first N1b1f0b04d72d473d966204ff21af3f78
115 rdf:rest rdf:nil
116 Nafb1cb0f4d36456ba094d699d62252ec schema:isbn 978-1-4419-0642-7
117 978-1-4419-0643-4
118 schema:name Computational Methods for Microstructure-Property Relationships
119 rdf:type schema:Book
120 Nc88b4a9bce164e4f8a3c35e6639a10b0 rdf:first N72ff6635d9bb4fcd9d40fdd3b8dff9f0
121 rdf:rest N4e78ef35e77846a695441ef028c7591d
122 Nd4c968ee051e4dec9acb4c4123717675 rdf:first Ne3ea437e1a3c46cda252915ec7fdb190
123 rdf:rest N909849fc45424b948b97edf922e45a71
124 Nd741818aec5b463ca58eb3505c64fd12 schema:familyName Brockman
125 schema:givenName Robert A. A.
126 rdf:type schema:Person
127 Ne3ea437e1a3c46cda252915ec7fdb190 schema:familyName Ghosh
128 schema:givenName Somnath
129 rdf:type schema:Person
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
134 schema:name Materials Engineering
135 rdf:type schema:DefinedTerm
136 grid-institutes:grid.296952.3 schema:alternateName Universal Energy Systems, Dayton, USA
137 schema:name Universal Energy Systems, Dayton, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...