An Expert System Based on Parametric Net to Support Motor Pump Multi-Failure Diagnostic View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Flavia Cristina Bernardini , Ana Cristina Bicharra Garcia , Inhaúma Neves Ferraz

ABSTRACT

Early failure detection in motor pumps is an important issue in prediction maintenance. An efficient condition-monitoring scheme is capable of providing warning and predicting the faults at early stages. Usually, this task is executed by humans. The logical progression of the condition-monitoring technologies is the automation of the diagnostic process. To automate the diagnostic process, intelligent diagnostic systems are used. Many researchers have explored artificial intelligence techniques to diagnose failures in general. However, all papers found in literature are related to a specific problem that can appear in many different machines. In real applications, when the expert analyzes a machine, not only one problem appears, but more than one problem may appear together. So, it is necessary to propose new methods to assist diagnosis looking for a set of occurring fails. For some failures, there are not sufficient instances that can ensure good classifiers induced by available machine learning algorithms. In this work, we propose a method to assist fault diagnoses in motor pumps, based on vibration signal analysis, using expert systems. To attend the problems related to motor pump analyses, we propose a parametric net model for multi-label problems. We also show a case study in this work, showing the applicability of our proposed method. More... »

PAGES

13-20

Book

TITLE

Artificial Intelligence Applications and Innovations III

ISBN

978-1-4419-0220-7
978-1-4419-0221-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4419-0221-4_4

DOI

http://dx.doi.org/10.1007/978-1-4419-0221-4_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021121319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "ADDLabs \u2014 Active Documentation Design Laboratory, UFF \u2014 Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n\u00b0 \u2014 Campus da Praia Vermelha, Boa Viagem, Niter\u00f3i, RJ, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernardini", 
        "givenName": "Flavia Cristina", 
        "id": "sg:person.013776555445.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776555445.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ADDLabs \u2014 Active Documentation Design Laboratory, UFF \u2014 Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n\u00b0 \u2014 Campus da Praia Vermelha, Boa Viagem, Niter\u00f3i, RJ, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Ana Cristina Bicharra", 
        "id": "sg:person.07430767131.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ADDLabs \u2014 Active Documentation Design Laboratory, UFF \u2014 Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n\u00b0 \u2014 Campus da Praia Vermelha, Boa Viagem, Niter\u00f3i, RJ, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferraz", 
        "givenName": "Inha\u00fama Neves", 
        "id": "sg:person.016530710470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530710470.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1007649029923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001772171", 
          "https://doi.org/10.1023/a:1007649029923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4754(03)00087-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005620495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4754(03)00087-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005620495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7796(02)00172-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010652210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7796(02)00172-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010652210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/505282.505283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023316280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mssp.1996.0036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030986380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.cs.04.060190.002221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1007730.1007735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037852366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/41.873214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061169691"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Early failure detection in motor pumps is an important issue in prediction maintenance. An efficient condition-monitoring scheme is capable of providing warning and predicting the faults at early stages. Usually, this task is executed by humans. The logical progression of the condition-monitoring technologies is the automation of the diagnostic process. To automate the diagnostic process, intelligent diagnostic systems are used. Many researchers have explored artificial intelligence techniques to diagnose failures in general. However, all papers found in literature are related to a specific problem that can appear in many different machines. In real applications, when the expert analyzes a machine, not only one problem appears, but more than one problem may appear together. So, it is necessary to propose new methods to assist diagnosis looking for a set of occurring fails. For some failures, there are not sufficient instances that can ensure good classifiers induced by available machine learning algorithms. In this work, we propose a method to assist fault diagnoses in motor pumps, based on vibration signal analysis, using expert systems. To attend the problems related to motor pump analyses, we propose a parametric net model for multi-label problems. We also show a case study in this work, showing the applicability of our proposed method.", 
    "editor": [
      {
        "familyName": "Iliadis", 
        "type": "Person"
      }, 
      {
        "familyName": "Maglogiann", 
        "type": "Person"
      }, 
      {
        "familyName": "Tsoumakasis", 
        "type": "Person"
      }, 
      {
        "familyName": "Vlahavas", 
        "type": "Person"
      }, 
      {
        "familyName": "Bramer", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4419-0221-4_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4419-0220-7", 
        "978-1-4419-0221-4"
      ], 
      "name": "Artificial Intelligence Applications and Innovations III", 
      "type": "Book"
    }, 
    "name": "An Expert System Based on Parametric Net to Support Motor Pump Multi-Failure Diagnostic", 
    "pagination": "13-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021121319"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4419-0221-4_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64a1f5115e393d9ec754f3d0c86977cb747d436843f2eea0ccb0f16ed7400617"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4419-0221-4_4", 
      "https://app.dimensions.ai/details/publication/pub.1021121319"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45366_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4419-0221-4_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0221-4_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0221-4_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0221-4_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4419-0221-4_4'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4419-0221-4_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5ad21ed0b0084794b142f6c4dce15162
4 schema:citation sg:pub.10.1023/a:1007649029923
5 https://doi.org/10.1006/mssp.1996.0036
6 https://doi.org/10.1016/s0378-4754(03)00087-9
7 https://doi.org/10.1016/s0378-7796(02)00172-4
8 https://doi.org/10.1109/41.873214
9 https://doi.org/10.1145/1007730.1007735
10 https://doi.org/10.1145/505282.505283
11 https://doi.org/10.1146/annurev.cs.04.060190.002221
12 schema:datePublished 2009
13 schema:datePublishedReg 2009-01-01
14 schema:description Early failure detection in motor pumps is an important issue in prediction maintenance. An efficient condition-monitoring scheme is capable of providing warning and predicting the faults at early stages. Usually, this task is executed by humans. The logical progression of the condition-monitoring technologies is the automation of the diagnostic process. To automate the diagnostic process, intelligent diagnostic systems are used. Many researchers have explored artificial intelligence techniques to diagnose failures in general. However, all papers found in literature are related to a specific problem that can appear in many different machines. In real applications, when the expert analyzes a machine, not only one problem appears, but more than one problem may appear together. So, it is necessary to propose new methods to assist diagnosis looking for a set of occurring fails. For some failures, there are not sufficient instances that can ensure good classifiers induced by available machine learning algorithms. In this work, we propose a method to assist fault diagnoses in motor pumps, based on vibration signal analysis, using expert systems. To attend the problems related to motor pump analyses, we propose a parametric net model for multi-label problems. We also show a case study in this work, showing the applicability of our proposed method.
15 schema:editor N1cac83710a9f4243b17da43d398c6c44
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N5e2f7a689184402c880738529c019e67
20 schema:name An Expert System Based on Parametric Net to Support Motor Pump Multi-Failure Diagnostic
21 schema:pagination 13-20
22 schema:productId N8acc34f466a44a0e9f1540585e366df9
23 N9877eb79cde54412ad65c4a1dc25fede
24 Nf0da918fb3b94adf97c61a2a7f850fe9
25 schema:publisher Nfd48c7b0c4c84f3d9624db1367c08756
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021121319
27 https://doi.org/10.1007/978-1-4419-0221-4_4
28 schema:sdDatePublished 2019-04-16T07:14
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N409bc216a2604ffabd177e80b1d8afc8
31 schema:url https://link.springer.com/10.1007%2F978-1-4419-0221-4_4
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N0430bcab84c54a5daebf1323cc558cbb rdf:first sg:person.07430767131.99
36 rdf:rest Nf87fb801964d48be92a56016d45f2fd8
37 N1cac83710a9f4243b17da43d398c6c44 rdf:first N9531d1f8f8fa41fb82b0f6009eea49c2
38 rdf:rest Nf6a59abe36f24490a9b53deac93dae5a
39 N409bc216a2604ffabd177e80b1d8afc8 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N46f58566e5d04c599f90cef1c0b0f08a schema:name ADDLabs — Active Documentation Design Laboratory, UFF — Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n° — Campus da Praia Vermelha, Boa Viagem, Niterói, RJ, Brazil
42 rdf:type schema:Organization
43 N4a1be36b06e74a519e4060418f2ac0a2 rdf:first N6ffe9981a37f4a9d84b0be8366bbf227
44 rdf:rest N4f2952892bf34164b865661eb05c3b55
45 N4f2952892bf34164b865661eb05c3b55 rdf:first Na682c232e709428481f0d452bc63c2bd
46 rdf:rest Nedfb7d6b19894144abc13ed981b853d8
47 N5ad21ed0b0084794b142f6c4dce15162 rdf:first sg:person.013776555445.44
48 rdf:rest N0430bcab84c54a5daebf1323cc558cbb
49 N5e2f7a689184402c880738529c019e67 schema:isbn 978-1-4419-0220-7
50 978-1-4419-0221-4
51 schema:name Artificial Intelligence Applications and Innovations III
52 rdf:type schema:Book
53 N6ffe9981a37f4a9d84b0be8366bbf227 schema:familyName Tsoumakasis
54 rdf:type schema:Person
55 N77e8551c95d842c29756856a76d87818 schema:familyName Maglogiann
56 rdf:type schema:Person
57 N8acc34f466a44a0e9f1540585e366df9 schema:name doi
58 schema:value 10.1007/978-1-4419-0221-4_4
59 rdf:type schema:PropertyValue
60 N9531d1f8f8fa41fb82b0f6009eea49c2 schema:familyName Iliadis
61 rdf:type schema:Person
62 N9877eb79cde54412ad65c4a1dc25fede schema:name readcube_id
63 schema:value 64a1f5115e393d9ec754f3d0c86977cb747d436843f2eea0ccb0f16ed7400617
64 rdf:type schema:PropertyValue
65 Na682c232e709428481f0d452bc63c2bd schema:familyName Vlahavas
66 rdf:type schema:Person
67 Nc1f69fd5366b44a3aa756929dd0918f2 schema:familyName Bramer
68 rdf:type schema:Person
69 Ne84d8cf07e744bb18ac0869029d62632 schema:name ADDLabs — Active Documentation Design Laboratory, UFF — Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n° — Campus da Praia Vermelha, Boa Viagem, Niterói, RJ, Brazil
70 rdf:type schema:Organization
71 Nedfb7d6b19894144abc13ed981b853d8 rdf:first Nc1f69fd5366b44a3aa756929dd0918f2
72 rdf:rest rdf:nil
73 Nf0da918fb3b94adf97c61a2a7f850fe9 schema:name dimensions_id
74 schema:value pub.1021121319
75 rdf:type schema:PropertyValue
76 Nf6a59abe36f24490a9b53deac93dae5a rdf:first N77e8551c95d842c29756856a76d87818
77 rdf:rest N4a1be36b06e74a519e4060418f2ac0a2
78 Nf87fb801964d48be92a56016d45f2fd8 rdf:first sg:person.016530710470.38
79 rdf:rest rdf:nil
80 Nfd48c7b0c4c84f3d9624db1367c08756 schema:location Boston, MA
81 schema:name Springer US
82 rdf:type schema:Organisation
83 Nff2f9dc96c50475b9bdeb05aa19ede6c schema:name ADDLabs — Active Documentation Design Laboratory, UFF — Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n° — Campus da Praia Vermelha, Boa Viagem, Niterói, RJ, Brazil
84 rdf:type schema:Organization
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:person.013776555445.44 schema:affiliation Ne84d8cf07e744bb18ac0869029d62632
92 schema:familyName Bernardini
93 schema:givenName Flavia Cristina
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776555445.44
95 rdf:type schema:Person
96 sg:person.016530710470.38 schema:affiliation Nff2f9dc96c50475b9bdeb05aa19ede6c
97 schema:familyName Ferraz
98 schema:givenName Inhaúma Neves
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530710470.38
100 rdf:type schema:Person
101 sg:person.07430767131.99 schema:affiliation N46f58566e5d04c599f90cef1c0b0f08a
102 schema:familyName Garcia
103 schema:givenName Ana Cristina Bicharra
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99
105 rdf:type schema:Person
106 sg:pub.10.1023/a:1007649029923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001772171
107 https://doi.org/10.1023/a:1007649029923
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1006/mssp.1996.0036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030986380
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0378-4754(03)00087-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005620495
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0378-7796(02)00172-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010652210
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/41.873214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169691
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/1007730.1007735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852366
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/505282.505283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316280
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1146/annurev.cs.04.060190.002221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425691
122 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...