Structural Study Of Multi-Component Glasses By The Reverse Monte Carlo Simulation Technique View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-01-01

AUTHORS

P. JÓvÁri , I. Kaban

ABSTRACT

Using the example of amorphous Ge2Sb2Te5 it is shown on how the local order at the level of pair distribution functions, coordination numbers and most probable interatomic distances can be revealed by combining the information obtained by different experimental techniques, when the measured data are modeled simultaneously by the reverse Monte-Carlo simulation technique (RMC). Special attention is paid to the information content of individual datasets. The capability of the new RMC implementation to assess the reliability of model structures is demonstrated. More... »

PAGES

123-130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4020-9916-8_11

DOI

http://dx.doi.org/10.1007/978-1-4020-9916-8_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033940049


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Institute for Solid State Physics and Optics, POB 49, H-1525, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.419115.9", 
          "name": [
            "Research Institute for Solid State Physics and Optics, POB 49, H-1525, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00d3v\u00c1ri", 
        "givenName": "P.", 
        "id": "sg:person.01341505675.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341505675.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chemnitz University of Technology, D-09107, Chemnitz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6810.f", 
          "name": [
            "Institute of Physics, Chemnitz University of Technology, D-09107, Chemnitz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaban", 
        "givenName": "I.", 
        "id": "sg:person.01277074647.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277074647.98"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-01-01", 
    "datePublishedReg": "2009-01-01", 
    "description": "Using the example of amorphous Ge2Sb2Te5 it is shown on how the local order at the level of pair distribution functions, coordination numbers and most probable interatomic distances can be revealed by combining the information obtained by different experimental techniques, when the measured data are modeled simultaneously by the reverse Monte-Carlo simulation technique (RMC). Special attention is paid to the information content of individual datasets. The capability of the new RMC implementation to assess the reliability of model structures is demonstrated.", 
    "editor": [
      {
        "familyName": "Reithmaier", 
        "givenName": "Johann Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Petkov", 
        "givenName": "Plamen", 
        "type": "Person"
      }, 
      {
        "familyName": "Kulisch", 
        "givenName": "Wilhelm", 
        "type": "Person"
      }, 
      {
        "familyName": "Popov", 
        "givenName": "Cyril", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4020-9916-8_11", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-9915-1", 
        "978-1-4020-9916-8"
      ], 
      "name": "Nanostructured Materials for Advanced Technological Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "reverse Monte Carlo simulation technique", 
      "Monte Carlo simulation technique", 
      "simulation techniques", 
      "probable interatomic distances", 
      "individual datasets", 
      "information content", 
      "distribution function", 
      "model structure", 
      "pair distribution function", 
      "multi-component glasses", 
      "dataset", 
      "different experimental techniques", 
      "technique", 
      "interatomic distances", 
      "local order", 
      "implementation", 
      "experimental techniques", 
      "capability", 
      "information", 
      "coordination number", 
      "amorphous Ge2Sb2Te5", 
      "reliability", 
      "example", 
      "order", 
      "data", 
      "special attention", 
      "number", 
      "distance", 
      "function", 
      "attention", 
      "structure", 
      "glass", 
      "Ge2Sb2Te5", 
      "content", 
      "structural studies", 
      "levels", 
      "study"
    ], 
    "name": "Structural Study Of Multi-Component Glasses By The Reverse Monte Carlo Simulation Technique", 
    "pagination": "123-130", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033940049"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4020-9916-8_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4020-9916-8_11", 
      "https://app.dimensions.ai/details/publication/pub.1033940049"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_78.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4020-9916-8_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9916-8_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9916-8_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9916-8_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9916-8_11'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      22 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4020-9916-8_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf84f20274d894534a013ccf28ad0c306
4 schema:datePublished 2009-01-01
5 schema:datePublishedReg 2009-01-01
6 schema:description Using the example of amorphous Ge2Sb2Te5 it is shown on how the local order at the level of pair distribution functions, coordination numbers and most probable interatomic distances can be revealed by combining the information obtained by different experimental techniques, when the measured data are modeled simultaneously by the reverse Monte-Carlo simulation technique (RMC). Special attention is paid to the information content of individual datasets. The capability of the new RMC implementation to assess the reliability of model structures is demonstrated.
7 schema:editor N598c009a04504ca6aa83eac5c61dce39
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N8296204c616d40f2bec560752d0edf78
11 schema:keywords Ge2Sb2Te5
12 Monte Carlo simulation technique
13 amorphous Ge2Sb2Te5
14 attention
15 capability
16 content
17 coordination number
18 data
19 dataset
20 different experimental techniques
21 distance
22 distribution function
23 example
24 experimental techniques
25 function
26 glass
27 implementation
28 individual datasets
29 information
30 information content
31 interatomic distances
32 levels
33 local order
34 model structure
35 multi-component glasses
36 number
37 order
38 pair distribution function
39 probable interatomic distances
40 reliability
41 reverse Monte Carlo simulation technique
42 simulation techniques
43 special attention
44 structural studies
45 structure
46 study
47 technique
48 schema:name Structural Study Of Multi-Component Glasses By The Reverse Monte Carlo Simulation Technique
49 schema:pagination 123-130
50 schema:productId N634580275656473a8b5673ceefcdd676
51 Nc4b4f0c153114c9abed1b99e4163e604
52 schema:publisher N72f5f3be98024a138eb04b56e9171b82
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033940049
54 https://doi.org/10.1007/978-1-4020-9916-8_11
55 schema:sdDatePublished 2022-08-04T17:22
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N4a77e6cf9cd049ff8a94dc76437f3d6c
58 schema:url https://doi.org/10.1007/978-1-4020-9916-8_11
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N0a2ef403e3804956b84dcbf116f1a954 rdf:first N2b44f576db004002967b447c429d7213
63 rdf:rest N5b730537b1f54852886dba7d4ecf948a
64 N2b44f576db004002967b447c429d7213 schema:familyName Petkov
65 schema:givenName Plamen
66 rdf:type schema:Person
67 N4a77e6cf9cd049ff8a94dc76437f3d6c schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N598c009a04504ca6aa83eac5c61dce39 rdf:first Na7ed9713894c4c2ba08be43544e18984
70 rdf:rest N0a2ef403e3804956b84dcbf116f1a954
71 N5b730537b1f54852886dba7d4ecf948a rdf:first Nd524195b061c481e9ae0a74e6a808b0b
72 rdf:rest Nb55174948a11478e899a30c06a9f7e25
73 N634580275656473a8b5673ceefcdd676 schema:name dimensions_id
74 schema:value pub.1033940049
75 rdf:type schema:PropertyValue
76 N6e28c1d23f2f4f6492276f739e1861c2 schema:familyName Popov
77 schema:givenName Cyril
78 rdf:type schema:Person
79 N6ef45e278699427380d7b51bab70df62 rdf:first sg:person.01277074647.98
80 rdf:rest rdf:nil
81 N72f5f3be98024a138eb04b56e9171b82 schema:name Springer Nature
82 rdf:type schema:Organisation
83 N8296204c616d40f2bec560752d0edf78 schema:isbn 978-1-4020-9915-1
84 978-1-4020-9916-8
85 schema:name Nanostructured Materials for Advanced Technological Applications
86 rdf:type schema:Book
87 Na7ed9713894c4c2ba08be43544e18984 schema:familyName Reithmaier
88 schema:givenName Johann Peter
89 rdf:type schema:Person
90 Nb55174948a11478e899a30c06a9f7e25 rdf:first N6e28c1d23f2f4f6492276f739e1861c2
91 rdf:rest rdf:nil
92 Nc4b4f0c153114c9abed1b99e4163e604 schema:name doi
93 schema:value 10.1007/978-1-4020-9916-8_11
94 rdf:type schema:PropertyValue
95 Nd524195b061c481e9ae0a74e6a808b0b schema:familyName Kulisch
96 schema:givenName Wilhelm
97 rdf:type schema:Person
98 Nf84f20274d894534a013ccf28ad0c306 rdf:first sg:person.01341505675.48
99 rdf:rest N6ef45e278699427380d7b51bab70df62
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:person.01277074647.98 schema:affiliation grid-institutes:grid.6810.f
107 schema:familyName Kaban
108 schema:givenName I.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277074647.98
110 rdf:type schema:Person
111 sg:person.01341505675.48 schema:affiliation grid-institutes:grid.419115.9
112 schema:familyName JÓvÁri
113 schema:givenName P.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341505675.48
115 rdf:type schema:Person
116 grid-institutes:grid.419115.9 schema:alternateName Research Institute for Solid State Physics and Optics, POB 49, H-1525, Budapest, Hungary
117 schema:name Research Institute for Solid State Physics and Optics, POB 49, H-1525, Budapest, Hungary
118 rdf:type schema:Organization
119 grid-institutes:grid.6810.f schema:alternateName Institute of Physics, Chemnitz University of Technology, D-09107, Chemnitz, Germany
120 schema:name Institute of Physics, Chemnitz University of Technology, D-09107, Chemnitz, Germany
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...