Ontology type: schema:Chapter Open Access: True
2009-01-01
AUTHORST.K. Shajahan , Sitabhra Sinha , Rahul Pandit
ABSTRACTCardiac arrhythmias such as ventricular tachycardia (VT) or ventricular fibrillation (VF) are the leading cause of death in the industrialised world. There is a growing consensus that these arrhythmias arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have been carried out to determine the effects of inhomogeneities in cardiac tissue on such arrhythmias. We give a brief overview of such experiments, and then an introduction to partial-differential-equation models for ventricular tissue. We show how different types of inhomogeneities can be included in such models, and then discuss various numerical studies, including our own, of the effects of these inhomogeneities on spiral-wave dynamics. The most remarkable qualitative conclusion of our studies is that the spiral-wave dynamics in such systems depends very sensitively on the positions of these inhomogeneities. More... »
PAGES51-67
Complex Dynamics in Physiological Systems: From Heart to Brain
ISBN
978-1-4020-9142-1
978-1-4020-9143-8
http://scigraph.springernature.com/pub.10.1007/978-1-4020-9143-8_4
DOIhttp://dx.doi.org/10.1007/978-1-4020-9143-8_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052592021
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India",
"id": "http://www.grid.ac/institutes/grid.34980.36",
"name": [
"Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India"
],
"type": "Organization"
},
"familyName": "Shajahan",
"givenName": "T.K.",
"id": "sg:person.01023720122.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023720122.52"
],
"type": "Person"
},
{
"familyName": "Sinha",
"givenName": "Sitabhra",
"id": "sg:person.01106420703.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25"
],
"type": "Person"
},
{
"familyName": "Pandit",
"givenName": "Rahul",
"id": "sg:person.01345602104.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345602104.64"
],
"type": "Person"
}
],
"datePublished": "2009-01-01",
"datePublishedReg": "2009-01-01",
"description": "Cardiac arrhythmias such as ventricular tachycardia (VT) or ventricular fibrillation (VF) are the leading cause of death in the industrialised world. There is a growing consensus that these arrhythmias arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have been carried out to determine the effects of inhomogeneities in cardiac tissue on such arrhythmias. We give a brief overview of such experiments, and then an introduction to partial-differential-equation models for ventricular tissue. We show how different types of inhomogeneities can be included in such models, and then discuss various numerical studies, including our own, of the effects of these inhomogeneities on spiral-wave dynamics. The most remarkable qualitative conclusion of our studies is that the spiral-wave dynamics in such systems depends very sensitively on the positions of these inhomogeneities.",
"editor": [
{
"familyName": "Dana",
"givenName": "Syamal K.",
"type": "Person"
},
{
"familyName": "Roy",
"givenName": "Prodyot K.",
"type": "Person"
},
{
"familyName": "Kurths",
"givenName": "J\u00fcrgen",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4020-9143-8_4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-1-4020-9142-1",
"978-1-4020-9143-8"
],
"name": "Complex Dynamics in Physiological Systems: From Heart to Brain",
"type": "Book"
},
"keywords": [
"spiral wave dynamics",
"spiral waves",
"effect of inhomogeneity",
"mathematical modelling",
"such models",
"qualitative conclusions",
"such systems",
"inhomogeneity",
"numerical study",
"equation model",
"waves",
"dynamics",
"such experiments",
"model",
"modelling",
"electrical activation",
"ventricular tachycardia",
"ventricular fibrillation",
"different types",
"experimental study",
"brief overview",
"system",
"ventricular tissue",
"one",
"cause of death",
"cardiac tissue",
"such arrhythmias",
"experiments",
"cardiac arrhythmias",
"position",
"arrhythmias",
"introduction",
"effect",
"tissue",
"types",
"overview",
"industrialised world",
"consensus",
"tachycardia",
"fibrillation",
"study",
"death",
"cause",
"activation",
"conclusion",
"formation",
"world"
],
"name": "The Mathematical Modelling of Inhomogeneities in Ventricular Tissue",
"pagination": "51-67",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052592021"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4020-9143-8_4"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4020-9143-8_4",
"https://app.dimensions.ai/details/publication/pub.1052592021"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_100.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4020-9143-8_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9143-8_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9143-8_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9143-8_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-9143-8_4'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
23 PREDICATES
72 URIs
65 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4020-9143-8_4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | Nbc5497f54ea14a3a96b29e8cd2999fba |
4 | ″ | schema:datePublished | 2009-01-01 |
5 | ″ | schema:datePublishedReg | 2009-01-01 |
6 | ″ | schema:description | Cardiac arrhythmias such as ventricular tachycardia (VT) or ventricular fibrillation (VF) are the leading cause of death in the industrialised world. There is a growing consensus that these arrhythmias arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have been carried out to determine the effects of inhomogeneities in cardiac tissue on such arrhythmias. We give a brief overview of such experiments, and then an introduction to partial-differential-equation models for ventricular tissue. We show how different types of inhomogeneities can be included in such models, and then discuss various numerical studies, including our own, of the effects of these inhomogeneities on spiral-wave dynamics. The most remarkable qualitative conclusion of our studies is that the spiral-wave dynamics in such systems depends very sensitively on the positions of these inhomogeneities. |
7 | ″ | schema:editor | N20c153c6b94d44dfa810c766da0e3f8e |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Na9037ef29071425cbbad9dfe8364f037 |
12 | ″ | schema:keywords | activation |
13 | ″ | ″ | arrhythmias |
14 | ″ | ″ | brief overview |
15 | ″ | ″ | cardiac arrhythmias |
16 | ″ | ″ | cardiac tissue |
17 | ″ | ″ | cause |
18 | ″ | ″ | cause of death |
19 | ″ | ″ | conclusion |
20 | ″ | ″ | consensus |
21 | ″ | ″ | death |
22 | ″ | ″ | different types |
23 | ″ | ″ | dynamics |
24 | ″ | ″ | effect |
25 | ″ | ″ | effect of inhomogeneity |
26 | ″ | ″ | electrical activation |
27 | ″ | ″ | equation model |
28 | ″ | ″ | experimental study |
29 | ″ | ″ | experiments |
30 | ″ | ″ | fibrillation |
31 | ″ | ″ | formation |
32 | ″ | ″ | industrialised world |
33 | ″ | ″ | inhomogeneity |
34 | ″ | ″ | introduction |
35 | ″ | ″ | mathematical modelling |
36 | ″ | ″ | model |
37 | ″ | ″ | modelling |
38 | ″ | ″ | numerical study |
39 | ″ | ″ | one |
40 | ″ | ″ | overview |
41 | ″ | ″ | position |
42 | ″ | ″ | qualitative conclusions |
43 | ″ | ″ | spiral wave dynamics |
44 | ″ | ″ | spiral waves |
45 | ″ | ″ | study |
46 | ″ | ″ | such arrhythmias |
47 | ″ | ″ | such experiments |
48 | ″ | ″ | such models |
49 | ″ | ″ | such systems |
50 | ″ | ″ | system |
51 | ″ | ″ | tachycardia |
52 | ″ | ″ | tissue |
53 | ″ | ″ | types |
54 | ″ | ″ | ventricular fibrillation |
55 | ″ | ″ | ventricular tachycardia |
56 | ″ | ″ | ventricular tissue |
57 | ″ | ″ | waves |
58 | ″ | ″ | world |
59 | ″ | schema:name | The Mathematical Modelling of Inhomogeneities in Ventricular Tissue |
60 | ″ | schema:pagination | 51-67 |
61 | ″ | schema:productId | Ndb89d8764e244ff9a1ab7b9cc3b78457 |
62 | ″ | ″ | Ne436ac7dd81544b9badaf154d4a58a12 |
63 | ″ | schema:publisher | Nb75ddaeb2ce5472c9b4620d3f61e3e67 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052592021 |
65 | ″ | ″ | https://doi.org/10.1007/978-1-4020-9143-8_4 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:41 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | Nfdd7ce5aed494473a3bdc7a7843b3214 |
69 | ″ | schema:url | https://doi.org/10.1007/978-1-4020-9143-8_4 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | chapters |
72 | ″ | rdf:type | schema:Chapter |
73 | N07b0044f77a048f180639dd4fb7db407 | rdf:first | N525b86230e294842b814de831423b57b |
74 | ″ | rdf:rest | rdf:nil |
75 | N0da9008c33b94ea4933e29088b5772d7 | rdf:first | N7c7441b66c444c1481c589a4eff166b1 |
76 | ″ | rdf:rest | N07b0044f77a048f180639dd4fb7db407 |
77 | N20c153c6b94d44dfa810c766da0e3f8e | rdf:first | Nb4ae3e3782d342d591aaadad7a946e87 |
78 | ″ | rdf:rest | N0da9008c33b94ea4933e29088b5772d7 |
79 | N525b86230e294842b814de831423b57b | schema:familyName | Kurths |
80 | ″ | schema:givenName | Jürgen |
81 | ″ | rdf:type | schema:Person |
82 | N6a0c44227f8c4b0396bc42c1a0ff90e3 | rdf:first | sg:person.01345602104.64 |
83 | ″ | rdf:rest | rdf:nil |
84 | N7c7441b66c444c1481c589a4eff166b1 | schema:familyName | Roy |
85 | ″ | schema:givenName | Prodyot K. |
86 | ″ | rdf:type | schema:Person |
87 | Na764673dc74645a3bd47f9a728ab5622 | rdf:first | sg:person.01106420703.25 |
88 | ″ | rdf:rest | N6a0c44227f8c4b0396bc42c1a0ff90e3 |
89 | Na9037ef29071425cbbad9dfe8364f037 | schema:isbn | 978-1-4020-9142-1 |
90 | ″ | ″ | 978-1-4020-9143-8 |
91 | ″ | schema:name | Complex Dynamics in Physiological Systems: From Heart to Brain |
92 | ″ | rdf:type | schema:Book |
93 | Nb4ae3e3782d342d591aaadad7a946e87 | schema:familyName | Dana |
94 | ″ | schema:givenName | Syamal K. |
95 | ″ | rdf:type | schema:Person |
96 | Nb75ddaeb2ce5472c9b4620d3f61e3e67 | schema:name | Springer Nature |
97 | ″ | rdf:type | schema:Organisation |
98 | Nbc5497f54ea14a3a96b29e8cd2999fba | rdf:first | sg:person.01023720122.52 |
99 | ″ | rdf:rest | Na764673dc74645a3bd47f9a728ab5622 |
100 | Ndb89d8764e244ff9a1ab7b9cc3b78457 | schema:name | doi |
101 | ″ | schema:value | 10.1007/978-1-4020-9143-8_4 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Ne436ac7dd81544b9badaf154d4a58a12 | schema:name | dimensions_id |
104 | ″ | schema:value | pub.1052592021 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | Nfdd7ce5aed494473a3bdc7a7843b3214 | schema:name | Springer Nature - SN SciGraph project |
107 | ″ | rdf:type | schema:Organization |
108 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Mathematical Sciences |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Applied Mathematics |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:person.01023720122.52 | schema:affiliation | grid-institutes:grid.34980.36 |
115 | ″ | schema:familyName | Shajahan |
116 | ″ | schema:givenName | T.K. |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023720122.52 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.01106420703.25 | schema:familyName | Sinha |
120 | ″ | schema:givenName | Sitabhra |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.01345602104.64 | schema:familyName | Pandit |
124 | ″ | schema:givenName | Rahul |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345602104.64 |
126 | ″ | rdf:type | schema:Person |
127 | grid-institutes:grid.34980.36 | schema:alternateName | Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India |
128 | ″ | schema:name | Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India |
129 | ″ | rdf:type | schema:Organization |