Ontology type: schema:Chapter
2008-01-01
AUTHORSAlexander V. Glushkov , Olga Yu. Khetselius , Andrey V. Loboda , Andrey A. Svinarenko
ABSTRACTA new consistent method for studying the interaction of atom with a realistic laser field, based on the quantum electrodynamics (QED) and S-matrix adiabatic formalism Gell-Mann and Low, is presented. In relativistic case the Gell-Mann and Low formula expressed an energy shift δE through QED scattering matrix including the interaction with as the laser field as the photon vacuum field. It is natural to describe the laser field-atom interaction by means of the radiation emission and absorption lines. Their position and shape fully determine the spectroscopy of atom in a field. The radiation atomic lines can be described by moments of different orders μn. The main contribution into μn is given by the resonant range. The values μn can be expanded into perturbation theory (PT) series. As example, the method is used for numerical calculation of the three-photon resonant, four-photon ionization profile of atomic hydrogen (1s-2p transition; wavelength = 365 nm) and multi-photon resonance width and shift for transition 6S-6F in the atom of Cs (wavelength 1,059 nm) in a laser pulses with the Gaussian and soliton-like shapes. The results of calculation the above threshold ionization (ATI) characteristics for atom of magnesium field are presented too. More... »
PAGES543-560
Frontiers in Quantum Systems in Chemistry and Physics
ISBN
978-1-4020-8706-6
978-1-4020-8707-3
http://scigraph.springernature.com/pub.10.1007/978-1-4020-8707-3_25
DOIhttp://dx.doi.org/10.1007/978-1-4020-8707-3_25
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008582639
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine",
"id": "http://www.grid.ac/institutes/grid.440557.7",
"name": [
"Inst. of Spectroscopy (ISAN), Russian Acad. Sci., 142090, Troitsk-Moscow, Russia",
"Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine"
],
"type": "Organization"
},
"familyName": "Glushkov",
"givenName": "Alexander V.",
"id": "sg:person.012001573415.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Abdus Salam International Centre for Theoretical Physics Strada Costiera, 11 - 34014, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.419330.c",
"name": [
"Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine",
"Abdus Salam International Centre for Theoretical Physics Strada Costiera, 11 - 34014, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Khetselius",
"givenName": "Olga Yu.",
"id": "sg:person.014624751311.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine",
"id": "http://www.grid.ac/institutes/grid.440557.7",
"name": [
"Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine"
],
"type": "Organization"
},
"familyName": "Loboda",
"givenName": "Andrey V.",
"id": "sg:person.016302333733.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302333733.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine",
"id": "http://www.grid.ac/institutes/grid.440557.7",
"name": [
"Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine"
],
"type": "Organization"
},
"familyName": "Svinarenko",
"givenName": "Andrey A.",
"id": "sg:person.010215751543.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010215751543.48"
],
"type": "Person"
}
],
"datePublished": "2008-01-01",
"datePublishedReg": "2008-01-01",
"description": "A new consistent method for studying the interaction of atom with a realistic laser field, based on the quantum electrodynamics (QED) and S-matrix adiabatic formalism Gell-Mann and Low, is presented. In relativistic case the Gell-Mann and Low formula expressed an energy shift \u03b4E through QED scattering matrix including the interaction with as the laser field as the photon vacuum field. It is natural to describe the laser field-atom interaction by means of the radiation emission and absorption lines. Their position and shape fully determine the spectroscopy of atom in a field. The radiation atomic lines can be described by moments of different orders \u03bcn. The main contribution into \u03bcn is given by the resonant range. The values \u03bcn can be expanded into perturbation theory (PT) series. As example, the method is used for numerical calculation of the three-photon resonant, four-photon ionization profile of atomic hydrogen (1s-2p transition; wavelength = 365 nm) and multi-photon resonance width and shift for transition 6S-6F in the atom of Cs (wavelength 1,059 nm) in a laser pulses with the Gaussian and soliton-like shapes. The results of calculation the above threshold ionization (ATI) characteristics for atom of magnesium field are presented too.",
"editor": [
{
"familyName": "Wilson",
"givenName": "Stephen",
"type": "Person"
},
{
"familyName": "Grout",
"givenName": "Peter J.",
"type": "Person"
},
{
"familyName": "Maruani",
"givenName": "Jean",
"type": "Person"
},
{
"familyName": "Delgado-Barrio",
"givenName": "Gerardo",
"type": "Person"
},
{
"familyName": "Piecuch",
"givenName": "Piotr",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4020-8707-3_25",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4020-8706-6",
"978-1-4020-8707-3"
],
"name": "Frontiers in Quantum Systems in Chemistry and Physics",
"type": "Book"
},
"keywords": [
"laser field",
"quantum electrodynamics",
"spectroscopy of atoms",
"multi-photon resonances",
"realistic laser field",
"above-threshold ionization",
"field-atom interaction",
"soliton-like shape",
"interaction of atoms",
"three-photon resonant",
"Gell-Mann",
"laser pulses",
"threshold ionization",
"vacuum field",
"atomic lines",
"QED approach",
"atomic hydrogen",
"absorption lines",
"ionization profiles",
"radiation emission",
"energy shift",
"resonance width",
"relativistic case",
"results of calculations",
"resonant range",
"perturbation theory series",
"Low formula",
"atoms",
"numerical calculations",
"ionization characteristics",
"new consistent method",
"field",
"calculations",
"electrodynamics",
"ionization",
"pulses",
"resonant",
"resonance",
"spectroscopy",
"emission",
"\u03bcN",
"interaction",
"width",
"hydrogen",
"different orders",
"shape",
"moment",
"Gaussian",
"shift",
"main contribution",
"lines",
"consistent method",
"range",
"formula",
"method",
"contribution",
"profile",
"position",
"CS",
"order",
"matrix",
"means",
"values",
"results",
"approach",
"example",
"characteristics",
"low",
"cases",
"series"
],
"name": "QED Approach to Atoms in a Laser Field: Multi-Photon Resonances and Above Threshold Ionization",
"pagination": "543-560",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008582639"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4020-8707-3_25"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4020-8707-3_25",
"https://app.dimensions.ai/details/publication/pub.1008582639"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_137.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4020-8707-3_25"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8707-3_25'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8707-3_25'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8707-3_25'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8707-3_25'
This table displays all metadata directly associated to this object as RDF triples.
176 TRIPLES
23 PREDICATES
95 URIs
88 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4020-8707-3_25 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N3b5c4b4405d5418d8af5c4443164dffd |
4 | ″ | schema:datePublished | 2008-01-01 |
5 | ″ | schema:datePublishedReg | 2008-01-01 |
6 | ″ | schema:description | A new consistent method for studying the interaction of atom with a realistic laser field, based on the quantum electrodynamics (QED) and S-matrix adiabatic formalism Gell-Mann and Low, is presented. In relativistic case the Gell-Mann and Low formula expressed an energy shift δE through QED scattering matrix including the interaction with as the laser field as the photon vacuum field. It is natural to describe the laser field-atom interaction by means of the radiation emission and absorption lines. Their position and shape fully determine the spectroscopy of atom in a field. The radiation atomic lines can be described by moments of different orders μn. The main contribution into μn is given by the resonant range. The values μn can be expanded into perturbation theory (PT) series. As example, the method is used for numerical calculation of the three-photon resonant, four-photon ionization profile of atomic hydrogen (1s-2p transition; wavelength = 365 nm) and multi-photon resonance width and shift for transition 6S-6F in the atom of Cs (wavelength 1,059 nm) in a laser pulses with the Gaussian and soliton-like shapes. The results of calculation the above threshold ionization (ATI) characteristics for atom of magnesium field are presented too. |
7 | ″ | schema:editor | N880351a1b1d64c2e9aff7941f8076fae |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N3bbebc1215ba4e01a0266d41798d5c2c |
12 | ″ | schema:keywords | CS |
13 | ″ | ″ | Gaussian |
14 | ″ | ″ | Gell-Mann |
15 | ″ | ″ | Low formula |
16 | ″ | ″ | QED approach |
17 | ″ | ″ | above-threshold ionization |
18 | ″ | ″ | absorption lines |
19 | ″ | ″ | approach |
20 | ″ | ″ | atomic hydrogen |
21 | ″ | ″ | atomic lines |
22 | ″ | ″ | atoms |
23 | ″ | ″ | calculations |
24 | ″ | ″ | cases |
25 | ″ | ″ | characteristics |
26 | ″ | ″ | consistent method |
27 | ″ | ″ | contribution |
28 | ″ | ″ | different orders |
29 | ″ | ″ | electrodynamics |
30 | ″ | ″ | emission |
31 | ″ | ″ | energy shift |
32 | ″ | ″ | example |
33 | ″ | ″ | field |
34 | ″ | ″ | field-atom interaction |
35 | ″ | ″ | formula |
36 | ″ | ″ | hydrogen |
37 | ″ | ″ | interaction |
38 | ″ | ″ | interaction of atoms |
39 | ″ | ″ | ionization |
40 | ″ | ″ | ionization characteristics |
41 | ″ | ″ | ionization profiles |
42 | ″ | ″ | laser field |
43 | ″ | ″ | laser pulses |
44 | ″ | ″ | lines |
45 | ″ | ″ | low |
46 | ″ | ″ | main contribution |
47 | ″ | ″ | matrix |
48 | ″ | ″ | means |
49 | ″ | ″ | method |
50 | ″ | ″ | moment |
51 | ″ | ″ | multi-photon resonances |
52 | ″ | ″ | new consistent method |
53 | ″ | ″ | numerical calculations |
54 | ″ | ″ | order |
55 | ″ | ″ | perturbation theory series |
56 | ″ | ″ | position |
57 | ″ | ″ | profile |
58 | ″ | ″ | pulses |
59 | ″ | ″ | quantum electrodynamics |
60 | ″ | ″ | radiation emission |
61 | ″ | ″ | range |
62 | ″ | ″ | realistic laser field |
63 | ″ | ″ | relativistic case |
64 | ″ | ″ | resonance |
65 | ″ | ″ | resonance width |
66 | ″ | ″ | resonant |
67 | ″ | ″ | resonant range |
68 | ″ | ″ | results |
69 | ″ | ″ | results of calculations |
70 | ″ | ″ | series |
71 | ″ | ″ | shape |
72 | ″ | ″ | shift |
73 | ″ | ″ | soliton-like shape |
74 | ″ | ″ | spectroscopy |
75 | ″ | ″ | spectroscopy of atoms |
76 | ″ | ″ | three-photon resonant |
77 | ″ | ″ | threshold ionization |
78 | ″ | ″ | vacuum field |
79 | ″ | ″ | values |
80 | ″ | ″ | width |
81 | ″ | ″ | μN |
82 | ″ | schema:name | QED Approach to Atoms in a Laser Field: Multi-Photon Resonances and Above Threshold Ionization |
83 | ″ | schema:pagination | 543-560 |
84 | ″ | schema:productId | N15ec74950af1416fa44397ace858f11d |
85 | ″ | ″ | N5d4bd897ba3e4c01a8b373211ae3f16f |
86 | ″ | schema:publisher | N17a7b6917fba44bd9f2cd9c48f32f130 |
87 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008582639 |
88 | ″ | ″ | https://doi.org/10.1007/978-1-4020-8707-3_25 |
89 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
90 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
91 | ″ | schema:sdPublisher | N6490580573144518b3c18537eee2cfdb |
92 | ″ | schema:url | https://doi.org/10.1007/978-1-4020-8707-3_25 |
93 | ″ | sgo:license | sg:explorer/license/ |
94 | ″ | sgo:sdDataset | chapters |
95 | ″ | rdf:type | schema:Chapter |
96 | N15ec74950af1416fa44397ace858f11d | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1008582639 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N17a7b6917fba44bd9f2cd9c48f32f130 | schema:name | Springer Nature |
100 | ″ | rdf:type | schema:Organisation |
101 | N2b0df5fac78543e59837afb5692c55bd | rdf:first | Nd8a7a023897b4d36b7fd3b2245d53992 |
102 | ″ | rdf:rest | rdf:nil |
103 | N2d5900c32eb84959aa212a87779527fb | schema:familyName | Maruani |
104 | ″ | schema:givenName | Jean |
105 | ″ | rdf:type | schema:Person |
106 | N312c41e2958b446d8c733b49cd686f31 | schema:familyName | Delgado-Barrio |
107 | ″ | schema:givenName | Gerardo |
108 | ″ | rdf:type | schema:Person |
109 | N3af0ed68b8d74614914729521c678bd4 | schema:familyName | Grout |
110 | ″ | schema:givenName | Peter J. |
111 | ″ | rdf:type | schema:Person |
112 | N3b5c4b4405d5418d8af5c4443164dffd | rdf:first | sg:person.012001573415.12 |
113 | ″ | rdf:rest | N42f0c49014474319a4a8b0ca3f414be2 |
114 | N3bbebc1215ba4e01a0266d41798d5c2c | schema:isbn | 978-1-4020-8706-6 |
115 | ″ | ″ | 978-1-4020-8707-3 |
116 | ″ | schema:name | Frontiers in Quantum Systems in Chemistry and Physics |
117 | ″ | rdf:type | schema:Book |
118 | N42f0c49014474319a4a8b0ca3f414be2 | rdf:first | sg:person.014624751311.43 |
119 | ″ | rdf:rest | N5931406d15d846aab3999216fc180cf3 |
120 | N4c7fd222431049988de49aca6fae83e5 | schema:familyName | Wilson |
121 | ″ | schema:givenName | Stephen |
122 | ″ | rdf:type | schema:Person |
123 | N5931406d15d846aab3999216fc180cf3 | rdf:first | sg:person.016302333733.62 |
124 | ″ | rdf:rest | N84eb6f61936d4bb19b7a5915893e0b05 |
125 | N5c8230c1b6ce4adeb9c71b98a8cdc073 | rdf:first | N3af0ed68b8d74614914729521c678bd4 |
126 | ″ | rdf:rest | Nd19af46e51954cdca6014e090e451be6 |
127 | N5d4bd897ba3e4c01a8b373211ae3f16f | schema:name | doi |
128 | ″ | schema:value | 10.1007/978-1-4020-8707-3_25 |
129 | ″ | rdf:type | schema:PropertyValue |
130 | N6490580573144518b3c18537eee2cfdb | schema:name | Springer Nature - SN SciGraph project |
131 | ″ | rdf:type | schema:Organization |
132 | N84eb6f61936d4bb19b7a5915893e0b05 | rdf:first | sg:person.010215751543.48 |
133 | ″ | rdf:rest | rdf:nil |
134 | N880351a1b1d64c2e9aff7941f8076fae | rdf:first | N4c7fd222431049988de49aca6fae83e5 |
135 | ″ | rdf:rest | N5c8230c1b6ce4adeb9c71b98a8cdc073 |
136 | Nd19af46e51954cdca6014e090e451be6 | rdf:first | N2d5900c32eb84959aa212a87779527fb |
137 | ″ | rdf:rest | Nd9e9cd1fd67045f4b1f6e63a633495fa |
138 | Nd8a7a023897b4d36b7fd3b2245d53992 | schema:familyName | Piecuch |
139 | ″ | schema:givenName | Piotr |
140 | ″ | rdf:type | schema:Person |
141 | Nd9e9cd1fd67045f4b1f6e63a633495fa | rdf:first | N312c41e2958b446d8c733b49cd686f31 |
142 | ″ | rdf:rest | N2b0df5fac78543e59837afb5692c55bd |
143 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
144 | ″ | schema:name | Physical Sciences |
145 | ″ | rdf:type | schema:DefinedTerm |
146 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
147 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
148 | ″ | rdf:type | schema:DefinedTerm |
149 | sg:person.010215751543.48 | schema:affiliation | grid-institutes:grid.440557.7 |
150 | ″ | schema:familyName | Svinarenko |
151 | ″ | schema:givenName | Andrey A. |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010215751543.48 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.012001573415.12 | schema:affiliation | grid-institutes:grid.440557.7 |
155 | ″ | schema:familyName | Glushkov |
156 | ″ | schema:givenName | Alexander V. |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.014624751311.43 | schema:affiliation | grid-institutes:grid.419330.c |
160 | ″ | schema:familyName | Khetselius |
161 | ″ | schema:givenName | Olga Yu. |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43 |
163 | ″ | rdf:type | schema:Person |
164 | sg:person.016302333733.62 | schema:affiliation | grid-institutes:grid.440557.7 |
165 | ″ | schema:familyName | Loboda |
166 | ″ | schema:givenName | Andrey V. |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302333733.62 |
168 | ″ | rdf:type | schema:Person |
169 | grid-institutes:grid.419330.c | schema:alternateName | Abdus Salam International Centre for Theoretical Physics Strada Costiera, 11 - 34014, Trieste, Italy |
170 | ″ | schema:name | Abdus Salam International Centre for Theoretical Physics Strada Costiera, 11 - 34014, Trieste, Italy |
171 | ″ | ″ | Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine |
172 | ″ | rdf:type | schema:Organization |
173 | grid-institutes:grid.440557.7 | schema:alternateName | Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine |
174 | ″ | schema:name | Inst. of Spectroscopy (ISAN), Russian Acad. Sci., 142090, Troitsk-Moscow, Russia |
175 | ″ | ″ | Odessa University, P.O. Box 24a, 65009, Odessa-9, Ukraine |
176 | ″ | rdf:type | schema:Organization |