Model of Attention Allocation for Car Driver by Driving Plan and Prediction of Environment Change View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-01-01

AUTHORS

Takashi Omori , Yuki Togashi , Koichiro Yamauchi

ABSTRACT

In this study, we try to construct a computational model of cardriver attention allocation that can explain real world driverbehavior. In our previous work, we proposed a model of a driver’seye glances that consists of bottom-up and top-down attention submodels. In this model, top-down eye motion is determined based on the driver’s driving plan, which designates desired attention allocation, whereas the bottom-up eye motion is determined based on predicted locations of moving objects. More... »

PAGES

515-519

Book

TITLE

Advances in Cognitive Neurodynamics ICCN 2007

ISBN

978-1-4020-8386-0
978-1-4020-8387-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4020-8387-7_90

DOI

http://dx.doi.org/10.1007/978-1-4020-8387-7_90

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050625288


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tamagawa University Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412905.b", 
          "name": [
            "Tamagawa University Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omori", 
        "givenName": "Takashi", 
        "id": "sg:person.01263557346.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Togashi", 
        "givenName": "Yuki", 
        "id": "sg:person.015345261071.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345261071.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Yamauchi", 
        "givenName": "Koichiro", 
        "id": "sg:person.07364502315.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364502315.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "In this study, we try to construct a computational model of cardriver attention allocation that can explain real world driverbehavior. In our previous work, we proposed a model of a driver\u2019seye glances that consists of bottom-up and top-down attention submodels. In this model, top-down eye motion is determined based on the driver\u2019s driving plan, which designates desired attention allocation, whereas the bottom-up eye motion is determined based on predicted locations of moving objects.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Rubin", 
        "type": "Person"
      }, 
      {
        "familyName": "Shen", 
        "givenName": "Enhua", 
        "type": "Person"
      }, 
      {
        "familyName": "Gu", 
        "givenName": "Fanji", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4020-8387-7_90", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-8386-0", 
        "978-1-4020-8387-7"
      ], 
      "name": "Advances in Cognitive Neurodynamics ICCN 2007", 
      "type": "Book"
    }, 
    "keywords": [
      "attention allocation", 
      "driving plan", 
      "eye motion", 
      "car drivers", 
      "computational model", 
      "objects", 
      "previous work", 
      "environment changes", 
      "glance", 
      "model", 
      "drivers", 
      "allocation", 
      "prediction", 
      "study", 
      "plan", 
      "motion", 
      "bottom", 
      "work", 
      "changes", 
      "location", 
      "submodels", 
      "cardriver attention allocation", 
      "real world driverbehavior", 
      "world driverbehavior", 
      "driverbehavior", 
      "driver\u2019seye glances", 
      "attention submodels", 
      "driver\u2019s driving plan"
    ], 
    "name": "Model of Attention Allocation for Car Driver by Driving Plan and Prediction of Environment Change", 
    "pagination": "515-519", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050625288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4020-8387-7_90"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4020-8387-7_90", 
      "https://app.dimensions.ai/details/publication/pub.1050625288"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_60.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4020-8387-7_90"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8387-7_90'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8387-7_90'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8387-7_90'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-8387-7_90'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      55 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4020-8387-7_90 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:17
4 anzsrc-for:1701
5 schema:author Nffc91bca24ce43e3bbbbee840169fece
6 schema:datePublished 2008-01-01
7 schema:datePublishedReg 2008-01-01
8 schema:description In this study, we try to construct a computational model of cardriver attention allocation that can explain real world driverbehavior. In our previous work, we proposed a model of a driver’seye glances that consists of bottom-up and top-down attention submodels. In this model, top-down eye motion is determined based on the driver’s driving plan, which designates desired attention allocation, whereas the bottom-up eye motion is determined based on predicted locations of moving objects.
9 schema:editor N327a3613a2bc4bed8c3931f9b8008111
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N68a78b58fde4412189d62c30fd34ee43
14 schema:keywords allocation
15 attention allocation
16 attention submodels
17 bottom
18 car drivers
19 cardriver attention allocation
20 changes
21 computational model
22 driverbehavior
23 drivers
24 driver’s driving plan
25 driver’seye glances
26 driving plan
27 environment changes
28 eye motion
29 glance
30 location
31 model
32 motion
33 objects
34 plan
35 prediction
36 previous work
37 real world driverbehavior
38 study
39 submodels
40 work
41 world driverbehavior
42 schema:name Model of Attention Allocation for Car Driver by Driving Plan and Prediction of Environment Change
43 schema:pagination 515-519
44 schema:productId Nec104aa796b4494f9bd143b9df95d98f
45 Nef3acf487890408dbdf8024c637af5ad
46 schema:publisher N3d1e7296f7d647a090d20d7a79fe1571
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050625288
48 https://doi.org/10.1007/978-1-4020-8387-7_90
49 schema:sdDatePublished 2022-01-01T19:26
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N3e15431864e74a8ba771fd6d0109b0c2
52 schema:url https://doi.org/10.1007/978-1-4020-8387-7_90
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N05b2495e14434255b40ae9f1007b92c7 schema:familyName Shen
57 schema:givenName Enhua
58 rdf:type schema:Person
59 N1452732b72224edeb4026269c826a9da schema:familyName Wang
60 schema:givenName Rubin
61 rdf:type schema:Person
62 N327a3613a2bc4bed8c3931f9b8008111 rdf:first N1452732b72224edeb4026269c826a9da
63 rdf:rest N56f6a945137e44cabe92a2a86ecb65fc
64 N3d1e7296f7d647a090d20d7a79fe1571 schema:name Springer Nature
65 rdf:type schema:Organisation
66 N3d36d2c82bfe470e848bd00c1affb79d schema:familyName Gu
67 schema:givenName Fanji
68 rdf:type schema:Person
69 N3e15431864e74a8ba771fd6d0109b0c2 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N3e7c94652de9411fa940ffd121abb832 rdf:first N3d36d2c82bfe470e848bd00c1affb79d
72 rdf:rest rdf:nil
73 N56f6a945137e44cabe92a2a86ecb65fc rdf:first N05b2495e14434255b40ae9f1007b92c7
74 rdf:rest N3e7c94652de9411fa940ffd121abb832
75 N68a78b58fde4412189d62c30fd34ee43 schema:isbn 978-1-4020-8386-0
76 978-1-4020-8387-7
77 schema:name Advances in Cognitive Neurodynamics ICCN 2007
78 rdf:type schema:Book
79 Nc1a9fdda0abb4198a8f02a9ea786d063 rdf:first sg:person.015345261071.21
80 rdf:rest Ne6817c656fc34f3c9f1379a602b01820
81 Ne6817c656fc34f3c9f1379a602b01820 rdf:first sg:person.07364502315.92
82 rdf:rest rdf:nil
83 Nec104aa796b4494f9bd143b9df95d98f schema:name dimensions_id
84 schema:value pub.1050625288
85 rdf:type schema:PropertyValue
86 Nef3acf487890408dbdf8024c637af5ad schema:name doi
87 schema:value 10.1007/978-1-4020-8387-7_90
88 rdf:type schema:PropertyValue
89 Nffc91bca24ce43e3bbbbee840169fece rdf:first sg:person.01263557346.07
90 rdf:rest Nc1a9fdda0abb4198a8f02a9ea786d063
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
98 schema:name Psychology and Cognitive Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
101 schema:name Psychology
102 rdf:type schema:DefinedTerm
103 sg:person.01263557346.07 schema:affiliation grid-institutes:grid.412905.b
104 schema:familyName Omori
105 schema:givenName Takashi
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07
107 rdf:type schema:Person
108 sg:person.015345261071.21 schema:familyName Togashi
109 schema:givenName Yuki
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345261071.21
111 rdf:type schema:Person
112 sg:person.07364502315.92 schema:familyName Yamauchi
113 schema:givenName Koichiro
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364502315.92
115 rdf:type schema:Person
116 grid-institutes:grid.412905.b schema:alternateName Tamagawa University Tokyo, Japan
117 schema:name Tamagawa University Tokyo, Japan
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...