Tunable THz Sources Based on Quasi-Phase-Matched Gallium Arsenide View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Konstantin Vodopyanov

ABSTRACT

We report a new highly efficient source of frequency-tunable (0.5–3.5 THz) narrowbandwidth terahertz wave packets with up to 1mW average power, based on parametric downconversion in quasi-phase-matched GaAs. Different lasers were employed as a pump source, including femtosecond OPA/DFG system (wavelength range 2–4 μm), Tm-fiber femtosecond laser (wavelength ~2 μm), and near-degenerate synchronously-pumped picosecond OPO system with extra- and intracavity THz generation. We prove experimentally that the optical-to-terahertz conversion efficiency is fluence–dependent, with the scaling factor being the same for femtosecond (optical rectification) and picosecond (difference frequency generation) pump pulses, with optical-to-terahertz conversion efficiency on the order of 0.1% per μJ. Keywords: Terahertz wave generation, optical rectification, difference frequency generation, quasiphase- matched, gallium arsenide GaAs. More... »

PAGES

419-441

Book

TITLE

Mid-Infrared Coherent Sources and Applications

ISBN

978-1-4020-6439-5
978-1-4020-6463-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4020-6463-0_13

DOI

http://dx.doi.org/10.1007/978-1-4020-6463-0_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006196898


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "E. L. Ginzton Laboratory, Stanford University, 94305\u00a0Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vodopyanov", 
        "givenName": "Konstantin", 
        "id": "sg:person.0762373011.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762373011.70"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "We report a new highly efficient source of frequency-tunable (0.5\u20133.5 THz) narrowbandwidth terahertz wave packets with up to 1mW average power, based on parametric downconversion in quasi-phase-matched GaAs. Different lasers were employed as a pump source, including femtosecond OPA/DFG system (wavelength range 2\u20134 \u03bcm), Tm-fiber femtosecond laser (wavelength ~2 \u03bcm), and near-degenerate synchronously-pumped picosecond OPO system with extra- and intracavity THz generation. We prove experimentally that the optical-to-terahertz conversion efficiency is fluence\u2013dependent, with the scaling factor being the same for femtosecond (optical rectification) and picosecond (difference frequency generation) pump pulses, with optical-to-terahertz conversion efficiency on the order of 0.1% per \u03bcJ. Keywords: Terahertz wave generation, optical rectification, difference frequency generation, quasiphase- matched, gallium arsenide GaAs.", 
    "editor": [
      {
        "familyName": "Ebrahim-Zadeh", 
        "givenName": "Majid", 
        "type": "Person"
      }, 
      {
        "familyName": "Sorokina", 
        "givenName": "Irina T.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4020-6463-0_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-6439-5", 
        "978-1-4020-6463-0"
      ], 
      "name": "Mid-Infrared Coherent Sources and Applications", 
      "type": "Book"
    }, 
    "name": "Tunable THz Sources Based on Quasi-Phase-Matched Gallium Arsenide", 
    "pagination": "419-441", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4020-6463-0_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d84ca7bbdf594ad4d49daa050dfba53056c693b11becd1764d494c81a82d246"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006196898"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4020-6463-0_13", 
      "https://app.dimensions.ai/details/publication/pub.1006196898"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000010.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4020-6463-0_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6463-0_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6463-0_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6463-0_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6463-0_13'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4020-6463-0_13 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N7aac9916a7584a16ac02a039eb37be4f
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description We report a new highly efficient source of frequency-tunable (0.5–3.5 THz) narrowbandwidth terahertz wave packets with up to 1mW average power, based on parametric downconversion in quasi-phase-matched GaAs. Different lasers were employed as a pump source, including femtosecond OPA/DFG system (wavelength range 2–4 μm), Tm-fiber femtosecond laser (wavelength ~2 μm), and near-degenerate synchronously-pumped picosecond OPO system with extra- and intracavity THz generation. We prove experimentally that the optical-to-terahertz conversion efficiency is fluence–dependent, with the scaling factor being the same for femtosecond (optical rectification) and picosecond (difference frequency generation) pump pulses, with optical-to-terahertz conversion efficiency on the order of 0.1% per μJ. Keywords: Terahertz wave generation, optical rectification, difference frequency generation, quasiphase- matched, gallium arsenide GaAs.
7 schema:editor Nb9263091b2504733b113b9cdd027e307
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N189b9da62b984ddda6da43e2d2f560e7
12 schema:name Tunable THz Sources Based on Quasi-Phase-Matched Gallium Arsenide
13 schema:pagination 419-441
14 schema:productId N0481892121b1477a8c81f067284c2afb
15 N84ddbfe03d754e5b97a176230b5441a5
16 N865e8f51639d4f8f8fc75d8509392e5c
17 schema:publisher N268b3de283584465bf864bc0cab6acfb
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006196898
19 https://doi.org/10.1007/978-1-4020-6463-0_13
20 schema:sdDatePublished 2019-04-15T20:46
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb920cbcef1094023a3a8a3cfa4ffc17a
23 schema:url http://link.springer.com/10.1007/978-1-4020-6463-0_13
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0481892121b1477a8c81f067284c2afb schema:name doi
28 schema:value 10.1007/978-1-4020-6463-0_13
29 rdf:type schema:PropertyValue
30 N189b9da62b984ddda6da43e2d2f560e7 schema:isbn 978-1-4020-6439-5
31 978-1-4020-6463-0
32 schema:name Mid-Infrared Coherent Sources and Applications
33 rdf:type schema:Book
34 N2689789630da4961be1daf18e5f43a75 schema:familyName Ebrahim-Zadeh
35 schema:givenName Majid
36 rdf:type schema:Person
37 N268b3de283584465bf864bc0cab6acfb schema:location Dordrecht
38 schema:name Springer Netherlands
39 rdf:type schema:Organisation
40 N72e3ef2674ad457e97d6b6bbad345c7b rdf:first Nee69eed9686341d2a80ca37c056ede29
41 rdf:rest rdf:nil
42 N7aac9916a7584a16ac02a039eb37be4f rdf:first sg:person.0762373011.70
43 rdf:rest rdf:nil
44 N84ddbfe03d754e5b97a176230b5441a5 schema:name readcube_id
45 schema:value 1d84ca7bbdf594ad4d49daa050dfba53056c693b11becd1764d494c81a82d246
46 rdf:type schema:PropertyValue
47 N865e8f51639d4f8f8fc75d8509392e5c schema:name dimensions_id
48 schema:value pub.1006196898
49 rdf:type schema:PropertyValue
50 Nb920cbcef1094023a3a8a3cfa4ffc17a schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nb9263091b2504733b113b9cdd027e307 rdf:first N2689789630da4961be1daf18e5f43a75
53 rdf:rest N72e3ef2674ad457e97d6b6bbad345c7b
54 Nee69eed9686341d2a80ca37c056ede29 schema:familyName Sorokina
55 schema:givenName Irina T.
56 rdf:type schema:Person
57 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
58 schema:name Physical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
61 schema:name Optical Physics
62 rdf:type schema:DefinedTerm
63 sg:person.0762373011.70 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
64 schema:familyName Vodopyanov
65 schema:givenName Konstantin
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762373011.70
67 rdf:type schema:Person
68 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
69 schema:name E. L. Ginzton Laboratory, Stanford University, 94305 Stanford, CA, USA
70 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...