Ontology type: schema:Chapter Open Access: True
2007-04-27
AUTHORSJacqueline Stefels , Michael Steinke , Suzanne Turner , Gill Malin , Sauveur Belviso
ABSTRACTSeawater concentrations of the climate-cooling, volatile sulphur compound dimethylsulphide (DMS) are the result of numerous production and consumption processes within the marine ecosystem. Due to this complex nature, it is difficult to predict temporal and geographical distribution patterns of DMS concentrations and the inclusion of DMS into global ocean climate models has only been attempted recently. Comparisons between individual model predictions, and ground-truthing exercises revealed that information on the functional relationships between physical and chemical ecosystem parameters, biological productivity and the production and consumption of DMS and its precursor dimethylsulphoniopropionate (DMSP) is necessary to further refine future climate models. In this review an attempt is made to quantify these functional relationships. The description of processes includes: (1) parameters controlling DMSP production such as species composition and abiotic factors; (2) the conversion of DMSP to DMS by algal and bacterial enzymes; (3) the fate of DMSP-sulphur due to, e.g., grazing, microbial consumption and sedimentation and (4) factors controlling DMS removal from the water column such as microbial consumption, photo-oxidation and emission to the atmosphere. We recommend the differentiation of six phytoplankton groups for inclusion in future models: eukaryotic and prokaryotic picoplankton, diatoms, dinoflagellates, and other phytoflagellates with and without DMSP-lyase activity. These functional groups are characterised by their cell size, DMSP content, DMSP-lyase activity and interactions with herbivorous grazers. In this review, emphasis is given to ecosystems dominated by the globally relevant haptophytes Emiliania huxleyi and Phaeocystis sp., which are important DMS and DMSP producers. More... »
PAGES245-275
Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements
ISBN
978-1-4020-6213-1
978-1-4020-6214-8
http://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_18
DOIhttp://dx.doi.org/10.1007/978-1-4020-6214-8_18
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1025011760
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oceanography",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratory of Plant Physiology, University of Groningen, P.O. Box 14, 9750 AA, Haren, The Netherlands",
"id": "http://www.grid.ac/institutes/grid.4830.f",
"name": [
"Laboratory of Plant Physiology, University of Groningen, P.O. Box 14, 9750 AA, Haren, The Netherlands"
],
"type": "Organization"
},
"familyName": "Stefels",
"givenName": "Jacqueline",
"id": "sg:person.016533143647.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533143647.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK",
"id": "http://www.grid.ac/institutes/grid.8356.8",
"name": [
"Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK",
"Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK"
],
"type": "Organization"
},
"familyName": "Steinke",
"givenName": "Michael",
"id": "sg:person.01172144064.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172144064.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK",
"id": "http://www.grid.ac/institutes/grid.8273.e",
"name": [
"Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
],
"type": "Organization"
},
"familyName": "Turner",
"givenName": "Suzanne",
"id": "sg:person.01270535755.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270535755.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK",
"id": "http://www.grid.ac/institutes/grid.8273.e",
"name": [
"Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK"
],
"type": "Organization"
},
"familyName": "Malin",
"givenName": "Gill",
"id": "sg:person.0746417145.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746417145.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire des Sciences du Climat et de l\u2019Environnement, UMR CEA-CNRS 1572, CEN/Saclay, B\u00e2t 709, L\u2019Orme des Merisiers, 91191, Gif-sur-Yvette, France",
"id": "http://www.grid.ac/institutes/grid.457334.2",
"name": [
"Laboratoire des Sciences du Climat et de l\u2019Environnement, UMR CEA-CNRS 1572, CEN/Saclay, B\u00e2t 709, L\u2019Orme des Merisiers, 91191, Gif-sur-Yvette, France"
],
"type": "Organization"
},
"familyName": "Belviso",
"givenName": "Sauveur",
"id": "sg:person.07356446353.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356446353.67"
],
"type": "Person"
}
],
"datePublished": "2007-04-27",
"datePublishedReg": "2007-04-27",
"description": "Seawater concentrations of the climate-cooling, volatile sulphur compound dimethylsulphide (DMS) are the result of numerous production and consumption processes within the marine ecosystem. Due to this complex nature, it is difficult to predict temporal and geographical distribution patterns of DMS concentrations and the inclusion of DMS into global ocean climate models has only been attempted recently. Comparisons between individual model predictions, and ground-truthing exercises revealed that information on the functional relationships between physical and chemical ecosystem parameters, biological productivity and the production and consumption of DMS and its precursor dimethylsulphoniopropionate (DMSP) is necessary to further refine future climate models. In this review an attempt is made to quantify these functional relationships. The description of processes includes: (1) parameters controlling DMSP production such as species composition and abiotic factors; (2) the conversion of DMSP to DMS by algal and bacterial enzymes; (3) the fate of DMSP-sulphur due to, e.g., grazing, microbial consumption and sedimentation and (4) factors controlling DMS removal from the water column such as microbial consumption, photo-oxidation and emission to the atmosphere. We recommend the differentiation of six phytoplankton groups for inclusion in future models: eukaryotic and prokaryotic picoplankton, diatoms, dinoflagellates, and other phytoflagellates with and without DMSP-lyase activity. These functional groups are characterised by their cell size, DMSP content, DMSP-lyase activity and interactions with herbivorous grazers. In this review, emphasis is given to ecosystems dominated by the globally relevant haptophytes Emiliania huxleyi and Phaeocystis sp., which are important DMS and DMSP producers.",
"editor": [
{
"familyName": "van Leeuwe",
"givenName": "M. A.",
"type": "Person"
},
{
"familyName": "Stefels",
"givenName": "J.",
"type": "Person"
},
{
"familyName": "Belviso",
"givenName": "S.",
"type": "Person"
},
{
"familyName": "Lancelot",
"givenName": "C.",
"type": "Person"
},
{
"familyName": "Verity",
"givenName": "P. G.",
"type": "Person"
},
{
"familyName": "Gieskes",
"givenName": "W. W. C.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4020-6214-8_18",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-1-4020-6213-1",
"978-1-4020-6214-8"
],
"name": "Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements",
"type": "Book"
},
"keywords": [
"climate models",
"DMSP lyase activity",
"microbial consumption",
"global ocean climate models",
"ocean climate models",
"future climate models",
"individual model predictions",
"precursor dimethylsulphoniopropionate",
"DMS concentrations",
"biological productivity",
"DMSP producers",
"water column",
"seawater concentrations",
"phytoplankton groups",
"prokaryotic picoplankton",
"Phaeocystis sp",
"dimethylsulphide",
"DMSP production",
"Emiliania huxleyi",
"marine ecosystems",
"ecosystem parameters",
"ecosystem modelling",
"DMS removal",
"herbivorous grazers",
"geographical distribution patterns",
"dimethylsulphoniopropionate",
"species composition",
"abiotic factors",
"functional relationship",
"DMSP content",
"bacterial enzymes",
"distribution patterns",
"numerous production",
"model predictions",
"ecosystems",
"cell size",
"future models",
"environmental constraints",
"consumption process",
"description of processes",
"sedimentation",
"huxleyi",
"diatoms",
"picoplankton",
"phytoflagellates",
"atmosphere",
"grazers",
"algal",
"dinoflagellates",
"production",
"sp",
"inclusion",
"enzyme",
"grazing",
"differentiation",
"composition",
"complex nature",
"modelling",
"fate",
"concentration",
"column",
"activity",
"model",
"productivity",
"functional groups",
"process",
"emission",
"patterns",
"constraints",
"relationship",
"prediction",
"interaction",
"factors",
"implications",
"content",
"producers",
"parameters",
"review",
"comparison",
"removal",
"nature",
"conversion",
"size",
"information",
"description",
"results",
"group",
"attempt",
"emphasis",
"consumption",
"exercise"
],
"name": "Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling",
"pagination": "245-275",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1025011760"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4020-6214-8_18"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4020-6214-8_18",
"https://app.dimensions.ai/details/publication/pub.1025011760"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_163.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4020-6214-8_18"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_18'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_18'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_18'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_18'
This table displays all metadata directly associated to this object as RDF triples.
222 TRIPLES
23 PREDICATES
118 URIs
109 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4020-6214-8_18 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0405 |
3 | ″ | ″ | anzsrc-for:06 |
4 | ″ | ″ | anzsrc-for:0605 |
5 | ″ | schema:author | Nb0c66fd3100943119e629a9faaf0e5c0 |
6 | ″ | schema:datePublished | 2007-04-27 |
7 | ″ | schema:datePublishedReg | 2007-04-27 |
8 | ″ | schema:description | Seawater concentrations of the climate-cooling, volatile sulphur compound dimethylsulphide (DMS) are the result of numerous production and consumption processes within the marine ecosystem. Due to this complex nature, it is difficult to predict temporal and geographical distribution patterns of DMS concentrations and the inclusion of DMS into global ocean climate models has only been attempted recently. Comparisons between individual model predictions, and ground-truthing exercises revealed that information on the functional relationships between physical and chemical ecosystem parameters, biological productivity and the production and consumption of DMS and its precursor dimethylsulphoniopropionate (DMSP) is necessary to further refine future climate models. In this review an attempt is made to quantify these functional relationships. The description of processes includes: (1) parameters controlling DMSP production such as species composition and abiotic factors; (2) the conversion of DMSP to DMS by algal and bacterial enzymes; (3) the fate of DMSP-sulphur due to, e.g., grazing, microbial consumption and sedimentation and (4) factors controlling DMS removal from the water column such as microbial consumption, photo-oxidation and emission to the atmosphere. We recommend the differentiation of six phytoplankton groups for inclusion in future models: eukaryotic and prokaryotic picoplankton, diatoms, dinoflagellates, and other phytoflagellates with and without DMSP-lyase activity. These functional groups are characterised by their cell size, DMSP content, DMSP-lyase activity and interactions with herbivorous grazers. In this review, emphasis is given to ecosystems dominated by the globally relevant haptophytes Emiliania huxleyi and Phaeocystis sp., which are important DMS and DMSP producers. |
9 | ″ | schema:editor | N80c5e11ba6c74ae99d6e401fcfb1bc95 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N8167d18fab904cd3860058cb25dd6b7b |
14 | ″ | schema:keywords | DMS concentrations |
15 | ″ | ″ | DMS removal |
16 | ″ | ″ | DMSP content |
17 | ″ | ″ | DMSP lyase activity |
18 | ″ | ″ | DMSP producers |
19 | ″ | ″ | DMSP production |
20 | ″ | ″ | Emiliania huxleyi |
21 | ″ | ″ | Phaeocystis sp |
22 | ″ | ″ | abiotic factors |
23 | ″ | ″ | activity |
24 | ″ | ″ | algal |
25 | ″ | ″ | atmosphere |
26 | ″ | ″ | attempt |
27 | ″ | ″ | bacterial enzymes |
28 | ″ | ″ | biological productivity |
29 | ″ | ″ | cell size |
30 | ″ | ″ | climate models |
31 | ″ | ″ | column |
32 | ″ | ″ | comparison |
33 | ″ | ″ | complex nature |
34 | ″ | ″ | composition |
35 | ″ | ″ | concentration |
36 | ″ | ″ | constraints |
37 | ″ | ″ | consumption |
38 | ″ | ″ | consumption process |
39 | ″ | ″ | content |
40 | ″ | ″ | conversion |
41 | ″ | ″ | description |
42 | ″ | ″ | description of processes |
43 | ″ | ″ | diatoms |
44 | ″ | ″ | differentiation |
45 | ″ | ″ | dimethylsulphide |
46 | ″ | ″ | dimethylsulphoniopropionate |
47 | ″ | ″ | dinoflagellates |
48 | ″ | ″ | distribution patterns |
49 | ″ | ″ | ecosystem modelling |
50 | ″ | ″ | ecosystem parameters |
51 | ″ | ″ | ecosystems |
52 | ″ | ″ | emission |
53 | ″ | ″ | emphasis |
54 | ″ | ″ | environmental constraints |
55 | ″ | ″ | enzyme |
56 | ″ | ″ | exercise |
57 | ″ | ″ | factors |
58 | ″ | ″ | fate |
59 | ″ | ″ | functional groups |
60 | ″ | ″ | functional relationship |
61 | ″ | ″ | future climate models |
62 | ″ | ″ | future models |
63 | ″ | ″ | geographical distribution patterns |
64 | ″ | ″ | global ocean climate models |
65 | ″ | ″ | grazers |
66 | ″ | ″ | grazing |
67 | ″ | ″ | group |
68 | ″ | ″ | herbivorous grazers |
69 | ″ | ″ | huxleyi |
70 | ″ | ″ | implications |
71 | ″ | ″ | inclusion |
72 | ″ | ″ | individual model predictions |
73 | ″ | ″ | information |
74 | ″ | ″ | interaction |
75 | ″ | ″ | marine ecosystems |
76 | ″ | ″ | microbial consumption |
77 | ″ | ″ | model |
78 | ″ | ″ | model predictions |
79 | ″ | ″ | modelling |
80 | ″ | ″ | nature |
81 | ″ | ″ | numerous production |
82 | ″ | ″ | ocean climate models |
83 | ″ | ″ | parameters |
84 | ″ | ″ | patterns |
85 | ″ | ″ | phytoflagellates |
86 | ″ | ″ | phytoplankton groups |
87 | ″ | ″ | picoplankton |
88 | ″ | ″ | precursor dimethylsulphoniopropionate |
89 | ″ | ″ | prediction |
90 | ″ | ″ | process |
91 | ″ | ″ | producers |
92 | ″ | ″ | production |
93 | ″ | ″ | productivity |
94 | ″ | ″ | prokaryotic picoplankton |
95 | ″ | ″ | relationship |
96 | ″ | ″ | removal |
97 | ″ | ″ | results |
98 | ″ | ″ | review |
99 | ″ | ″ | seawater concentrations |
100 | ″ | ″ | sedimentation |
101 | ″ | ″ | size |
102 | ″ | ″ | sp |
103 | ″ | ″ | species composition |
104 | ″ | ″ | water column |
105 | ″ | schema:name | Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling |
106 | ″ | schema:pagination | 245-275 |
107 | ″ | schema:productId | N6e304e4c21744926837c9cfc2f6fea00 |
108 | ″ | ″ | N963baf361c29423283d3b3ed44896df8 |
109 | ″ | schema:publisher | N1b2d327136cc4576ae58eb3a561c73dd |
110 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025011760 |
111 | ″ | ″ | https://doi.org/10.1007/978-1-4020-6214-8_18 |
112 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
113 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
114 | ″ | schema:sdPublisher | N216eeca4c0d04eee843f74fe1a6d4fc8 |
115 | ″ | schema:url | https://doi.org/10.1007/978-1-4020-6214-8_18 |
116 | ″ | sgo:license | sg:explorer/license/ |
117 | ″ | sgo:sdDataset | chapters |
118 | ″ | rdf:type | schema:Chapter |
119 | N02d4ccda284347adbe60ba92468018e1 | rdf:first | sg:person.07356446353.67 |
120 | ″ | rdf:rest | rdf:nil |
121 | N1b2d327136cc4576ae58eb3a561c73dd | schema:name | Springer Nature |
122 | ″ | rdf:type | schema:Organisation |
123 | N216eeca4c0d04eee843f74fe1a6d4fc8 | schema:name | Springer Nature - SN SciGraph project |
124 | ″ | rdf:type | schema:Organization |
125 | N49d8f9b5b8a64c9bb03b3ffd44833b8a | rdf:first | Nf8a22b0966c94d45a7a6468eb597dfa0 |
126 | ″ | rdf:rest | Nd246ec2b80e848899d9e354335518b1a |
127 | N56265036a4a6467ead34edaa201bc3ea | rdf:first | Nbfde1c413d07455ba63db797261531d2 |
128 | ″ | rdf:rest | N5c3f6567a1a8466bb4e4638d08f627b4 |
129 | N5c3f6567a1a8466bb4e4638d08f627b4 | rdf:first | N9926e9b11dba4824bef8ff4162be639b |
130 | ″ | rdf:rest | N81b7d2d171694e89b7494d1f29ffef66 |
131 | N6e304e4c21744926837c9cfc2f6fea00 | schema:name | doi |
132 | ″ | schema:value | 10.1007/978-1-4020-6214-8_18 |
133 | ″ | rdf:type | schema:PropertyValue |
134 | N80c5e11ba6c74ae99d6e401fcfb1bc95 | rdf:first | Nce59ca1f043e430db9a686be7280e3ee |
135 | ″ | rdf:rest | N49d8f9b5b8a64c9bb03b3ffd44833b8a |
136 | N8167d18fab904cd3860058cb25dd6b7b | schema:isbn | 978-1-4020-6213-1 |
137 | ″ | ″ | 978-1-4020-6214-8 |
138 | ″ | schema:name | Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements |
139 | ″ | rdf:type | schema:Book |
140 | N81b7d2d171694e89b7494d1f29ffef66 | rdf:first | Nce03d530a860471e989fa9a1f1f5824a |
141 | ″ | rdf:rest | rdf:nil |
142 | N94eafb10378c495eb1bc9a34af878b83 | rdf:first | sg:person.01172144064.46 |
143 | ″ | rdf:rest | Nef1e017b9e554099a76bc5d65759656d |
144 | N963baf361c29423283d3b3ed44896df8 | schema:name | dimensions_id |
145 | ″ | schema:value | pub.1025011760 |
146 | ″ | rdf:type | schema:PropertyValue |
147 | N9926e9b11dba4824bef8ff4162be639b | schema:familyName | Verity |
148 | ″ | schema:givenName | P. G. |
149 | ″ | rdf:type | schema:Person |
150 | Nb0c66fd3100943119e629a9faaf0e5c0 | rdf:first | sg:person.016533143647.66 |
151 | ″ | rdf:rest | N94eafb10378c495eb1bc9a34af878b83 |
152 | Nb9d81215cdc349c586a24ef525f6f01a | rdf:first | sg:person.0746417145.65 |
153 | ″ | rdf:rest | N02d4ccda284347adbe60ba92468018e1 |
154 | Nbde5ec21372f455c862cc9ad7697ef7b | schema:familyName | Belviso |
155 | ″ | schema:givenName | S. |
156 | ″ | rdf:type | schema:Person |
157 | Nbfde1c413d07455ba63db797261531d2 | schema:familyName | Lancelot |
158 | ″ | schema:givenName | C. |
159 | ″ | rdf:type | schema:Person |
160 | Nce03d530a860471e989fa9a1f1f5824a | schema:familyName | Gieskes |
161 | ″ | schema:givenName | W. W. C. |
162 | ″ | rdf:type | schema:Person |
163 | Nce59ca1f043e430db9a686be7280e3ee | schema:familyName | van Leeuwe |
164 | ″ | schema:givenName | M. A. |
165 | ″ | rdf:type | schema:Person |
166 | Nd246ec2b80e848899d9e354335518b1a | rdf:first | Nbde5ec21372f455c862cc9ad7697ef7b |
167 | ″ | rdf:rest | N56265036a4a6467ead34edaa201bc3ea |
168 | Nef1e017b9e554099a76bc5d65759656d | rdf:first | sg:person.01270535755.86 |
169 | ″ | rdf:rest | Nb9d81215cdc349c586a24ef525f6f01a |
170 | Nf8a22b0966c94d45a7a6468eb597dfa0 | schema:familyName | Stefels |
171 | ″ | schema:givenName | J. |
172 | ″ | rdf:type | schema:Person |
173 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
174 | ″ | schema:name | Earth Sciences |
175 | ″ | rdf:type | schema:DefinedTerm |
176 | anzsrc-for:0405 | schema:inDefinedTermSet | anzsrc-for: |
177 | ″ | schema:name | Oceanography |
178 | ″ | rdf:type | schema:DefinedTerm |
179 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
180 | ″ | schema:name | Biological Sciences |
181 | ″ | rdf:type | schema:DefinedTerm |
182 | anzsrc-for:0605 | schema:inDefinedTermSet | anzsrc-for: |
183 | ″ | schema:name | Microbiology |
184 | ″ | rdf:type | schema:DefinedTerm |
185 | sg:person.01172144064.46 | schema:affiliation | grid-institutes:grid.8356.8 |
186 | ″ | schema:familyName | Steinke |
187 | ″ | schema:givenName | Michael |
188 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172144064.46 |
189 | ″ | rdf:type | schema:Person |
190 | sg:person.01270535755.86 | schema:affiliation | grid-institutes:grid.8273.e |
191 | ″ | schema:familyName | Turner |
192 | ″ | schema:givenName | Suzanne |
193 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270535755.86 |
194 | ″ | rdf:type | schema:Person |
195 | sg:person.016533143647.66 | schema:affiliation | grid-institutes:grid.4830.f |
196 | ″ | schema:familyName | Stefels |
197 | ″ | schema:givenName | Jacqueline |
198 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016533143647.66 |
199 | ″ | rdf:type | schema:Person |
200 | sg:person.07356446353.67 | schema:affiliation | grid-institutes:grid.457334.2 |
201 | ″ | schema:familyName | Belviso |
202 | ″ | schema:givenName | Sauveur |
203 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356446353.67 |
204 | ″ | rdf:type | schema:Person |
205 | sg:person.0746417145.65 | schema:affiliation | grid-institutes:grid.8273.e |
206 | ″ | schema:familyName | Malin |
207 | ″ | schema:givenName | Gill |
208 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746417145.65 |
209 | ″ | rdf:type | schema:Person |
210 | grid-institutes:grid.457334.2 | schema:alternateName | Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS 1572, CEN/Saclay, Bât 709, L’Orme des Merisiers, 91191, Gif-sur-Yvette, France |
211 | ″ | schema:name | Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS 1572, CEN/Saclay, Bât 709, L’Orme des Merisiers, 91191, Gif-sur-Yvette, France |
212 | ″ | rdf:type | schema:Organization |
213 | grid-institutes:grid.4830.f | schema:alternateName | Laboratory of Plant Physiology, University of Groningen, P.O. Box 14, 9750 AA, Haren, The Netherlands |
214 | ″ | schema:name | Laboratory of Plant Physiology, University of Groningen, P.O. Box 14, 9750 AA, Haren, The Netherlands |
215 | ″ | rdf:type | schema:Organization |
216 | grid-institutes:grid.8273.e | schema:alternateName | Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK |
217 | ″ | schema:name | Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK |
218 | ″ | rdf:type | schema:Organization |
219 | grid-institutes:grid.8356.8 | schema:alternateName | Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK |
220 | ″ | schema:name | Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK |
221 | ″ | ″ | Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences, University of East Anglia, NR4 7TJ, Norwich, UK |
222 | ″ | rdf:type | schema:Organization |