Ontology type: schema:Chapter
2007-04-20
AUTHORSJens C. Nejstgaard , Kam W. Tang , Michael Steinke , Jörg Dutz , Marja Koski , Elvire Antajan , Jeremy D. Long
ABSTRACTThe worldwide colony-forming haptophyte phytoplankton Phaeocystis spp. are key organisms in trophic and biogeochemical processes in the ocean. Many organisms from protists to fish ingest cells and/or colonies of Phaeocystis. Reports on specific mortality of Phaeocystis in natural plankton or mixed prey due to grazing by zooplankton, especially protozooplankton, are still limited. Reported feeding rates vary widely for both crustaceans and protists feeding on even the same Phaeocystis types and sizes. Quantitative analysis of available data showed that: (1) laboratory-derived crustacean grazing rates on monocultures of Phaeocystis may have been overestimated compared to feeding in natural plankton communities, and should be treated with caution; (2) formation of colonies by P. globosa appeared to reduce predation by small copepods (e.g., Acartia, Pseudocalanus, Temora and Centropages), whereas large copepods (e.g., Calanus spp.) were able to feed on colonies of Phaeocystis pouchetii; (3) physiological differences between different growth states, species, strains, cell types, and laboratory culture versus natural assemblages may explain most of the variations in reported feeding rates; (4) chemical signaling between predator and prey may be a major factor controlling grazing on Phaeocystis; (5) it is unclear to what extent different zooplankton, especially protozooplankton, feed on the different life forms of Phaeocystis in situ. To better understand the mechanisms controlling zooplankton grazing in situ, future studies should aim at quantifying specific feeding rates on different Phaeocystis species, strains, cell types, prey sizes and growth states, and account for chemical signaling between the predator and prey. Recently developed molecular tools are promising approaches to achieve this goal in the future. More... »
PAGES147-172
Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements
ISBN
978-1-4020-6213-1
978-1-4020-6214-8
http://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_12
DOIhttp://dx.doi.org/10.1007/978-1-4020-6214-8_12
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003016593
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Ecology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "UNIFOB AS, Department of Biology, University of Bergen, Bergen High Technology Centre, 5020, Bergen, Norway",
"id": "http://www.grid.ac/institutes/grid.7914.b",
"name": [
"UNIFOB AS, Department of Biology, University of Bergen, Bergen High Technology Centre, 5020, Bergen, Norway"
],
"type": "Organization"
},
"familyName": "Nejstgaard",
"givenName": "Jens C.",
"id": "sg:person.013547166001.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013547166001.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Virginia Institute of Marine Science, 1208 Greate Road, 23062, Gloucester Point, VA, USA",
"id": "http://www.grid.ac/institutes/grid.264889.9",
"name": [
"Virginia Institute of Marine Science, 1208 Greate Road, 23062, Gloucester Point, VA, USA"
],
"type": "Organization"
},
"familyName": "Tang",
"givenName": "Kam W.",
"id": "sg:person.0611240210.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611240210.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK",
"id": "http://www.grid.ac/institutes/grid.8356.8",
"name": [
"Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK"
],
"type": "Organization"
},
"familyName": "Steinke",
"givenName": "Michael",
"id": "sg:person.01172144064.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172144064.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Baltic Sea Research, Seestra\u00dfe 15, 18119, Rostock Warnemunde, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute for Baltic Sea Research, Seestra\u00dfe 15, 18119, Rostock Warnemunde, Germany"
],
"type": "Organization"
},
"familyName": "Dutz",
"givenName": "J\u00f6rg",
"id": "sg:person.010365554105.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365554105.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Danish Institute for Fisheries Research, Kavalerg\u00e5rden 6, 2920, Charlottenlund, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"Danish Institute for Fisheries Research, Kavalerg\u00e5rden 6, 2920, Charlottenlund, Denmark"
],
"type": "Organization"
},
"familyName": "Koski",
"givenName": "Marja",
"id": "sg:person.010541523045.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541523045.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire d\u2019Oc\u00e9anographie de Villefranche, CNRS, 06230, Villefranche-sur-Mer, France",
"id": "http://www.grid.ac/institutes/grid.4444.0",
"name": [
"Laboratoire d\u2019Oc\u00e9anographie de Villefranche, Universit\u00e9 Pierre et Marie Curie-Paris6, 06230, Villefranche-sur-Mer, France",
"Laboratoire d\u2019Oc\u00e9anographie de Villefranche, CNRS, 06230, Villefranche-sur-Mer, France"
],
"type": "Organization"
},
"familyName": "Antajan",
"givenName": "Elvire",
"id": "sg:person.016620533411.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016620533411.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Northeastern University Marine Science Center, 430 Nahant Road, 01908, Nahant, MA, USA",
"id": "http://www.grid.ac/institutes/grid.261112.7",
"name": [
"Northeastern University Marine Science Center, 430 Nahant Road, 01908, Nahant, MA, USA"
],
"type": "Organization"
},
"familyName": "Long",
"givenName": "Jeremy D.",
"id": "sg:person.0646643156.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646643156.89"
],
"type": "Person"
}
],
"datePublished": "2007-04-20",
"datePublishedReg": "2007-04-20",
"description": "The worldwide colony-forming haptophyte phytoplankton Phaeocystis spp. are key organisms in trophic and biogeochemical processes in the ocean. Many organisms from protists to fish ingest cells and/or colonies of Phaeocystis. Reports on specific mortality of Phaeocystis in natural plankton or mixed prey due to grazing by zooplankton, especially protozooplankton, are still limited. Reported feeding rates vary widely for both crustaceans and protists feeding on even the same Phaeocystis types and sizes. Quantitative analysis of available data showed that: (1) laboratory-derived crustacean grazing rates on monocultures of Phaeocystis may have been overestimated compared to feeding in natural plankton communities, and should be treated with caution; (2) formation of colonies by P. globosa appeared to reduce predation by small copepods (e.g., Acartia, Pseudocalanus, Temora and Centropages), whereas large copepods (e.g., Calanus spp.) were able to feed on colonies of Phaeocystis pouchetii; (3) physiological differences between different growth states, species, strains, cell types, and laboratory culture versus natural assemblages may explain most of the variations in reported feeding rates; (4) chemical signaling between predator and prey may be a major factor controlling grazing on Phaeocystis; (5) it is unclear to what extent different zooplankton, especially protozooplankton, feed on the different life forms of Phaeocystis in\u00a0situ. To better understand the mechanisms controlling zooplankton grazing in\u00a0situ, future studies should aim at quantifying specific feeding rates on different Phaeocystis species, strains, cell types, prey sizes and growth states, and account for chemical signaling between the predator and prey. Recently developed molecular tools are promising approaches to achieve this goal in the future.",
"editor": [
{
"familyName": "van Leeuwe",
"givenName": "M. A.",
"type": "Person"
},
{
"familyName": "Stefels",
"givenName": "J.",
"type": "Person"
},
{
"familyName": "Belviso",
"givenName": "S.",
"type": "Person"
},
{
"familyName": "Lancelot",
"givenName": "C.",
"type": "Person"
},
{
"familyName": "Verity",
"givenName": "P. G.",
"type": "Person"
},
{
"familyName": "Gieskes",
"givenName": "W. W. C.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4020-6214-8_12",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4020-6213-1",
"978-1-4020-6214-8"
],
"name": "Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements",
"type": "Book"
},
"keywords": [
"chemical signaling",
"cell types",
"different life forms",
"feeding rate",
"growth state",
"natural plankton communities",
"formation of colonies",
"Phaeocystis species",
"specific feeding rates",
"different growth states",
"key organisms",
"prey size",
"mixed prey",
"plankton communities",
"molecular tools",
"natural plankton",
"P. globosa",
"different zooplankton",
"life forms",
"Phaeocystis pouchetii",
"natural assemblages",
"Phaeocystis",
"grazing rates",
"Phaeocystis spp",
"laboratory cultures",
"zooplankton grazing",
"prey",
"small copepods",
"large copepods",
"zooplankton",
"protists",
"physiological differences",
"predators",
"biogeochemical processes",
"protozooplankton",
"grazing",
"copepods",
"organisms",
"signaling",
"species",
"colonies",
"predation",
"crustaceans",
"pouchetii",
"plankton",
"monoculture",
"globosa",
"strains",
"assemblages",
"spp",
"future studies",
"major factor",
"cells",
"Ocean",
"future challenges",
"available data",
"mechanism",
"types",
"community",
"situ",
"quantitative review",
"culture",
"promising approach",
"variation",
"size",
"formation",
"quantitative analysis",
"rate",
"factors",
"analysis",
"form",
"review",
"data",
"process",
"tool",
"study",
"differences",
"future",
"state",
"caution",
"report",
"approach",
"mortality",
"challenges",
"goal",
"specific mortality"
],
"name": "Zooplankton grazing on Phaeocystis: a quantitative review and future challenges",
"pagination": "147-172",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003016593"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4020-6214-8_12"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4020-6214-8_12",
"https://app.dimensions.ai/details/publication/pub.1003016593"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_149.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4020-6214-8_12"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_12'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_12'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_12'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-6214-8_12'
This table displays all metadata directly associated to this object as RDF triples.
232 TRIPLES
23 PREDICATES
111 URIs
104 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4020-6214-8_12 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0602 |
3 | ″ | schema:author | N4c424669d15e4a8bb01108f9e864c334 |
4 | ″ | schema:datePublished | 2007-04-20 |
5 | ″ | schema:datePublishedReg | 2007-04-20 |
6 | ″ | schema:description | The worldwide colony-forming haptophyte phytoplankton Phaeocystis spp. are key organisms in trophic and biogeochemical processes in the ocean. Many organisms from protists to fish ingest cells and/or colonies of Phaeocystis. Reports on specific mortality of Phaeocystis in natural plankton or mixed prey due to grazing by zooplankton, especially protozooplankton, are still limited. Reported feeding rates vary widely for both crustaceans and protists feeding on even the same Phaeocystis types and sizes. Quantitative analysis of available data showed that: (1) laboratory-derived crustacean grazing rates on monocultures of Phaeocystis may have been overestimated compared to feeding in natural plankton communities, and should be treated with caution; (2) formation of colonies by P. globosa appeared to reduce predation by small copepods (e.g., Acartia, Pseudocalanus, Temora and Centropages), whereas large copepods (e.g., Calanus spp.) were able to feed on colonies of Phaeocystis pouchetii; (3) physiological differences between different growth states, species, strains, cell types, and laboratory culture versus natural assemblages may explain most of the variations in reported feeding rates; (4) chemical signaling between predator and prey may be a major factor controlling grazing on Phaeocystis; (5) it is unclear to what extent different zooplankton, especially protozooplankton, feed on the different life forms of Phaeocystis in situ. To better understand the mechanisms controlling zooplankton grazing in situ, future studies should aim at quantifying specific feeding rates on different Phaeocystis species, strains, cell types, prey sizes and growth states, and account for chemical signaling between the predator and prey. Recently developed molecular tools are promising approaches to achieve this goal in the future. |
7 | ″ | schema:editor | N54115fca6bd544c78d37b94c460450e2 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N6fb6fb6977df46bfb8cc8913d07b1e2a |
12 | ″ | schema:keywords | Ocean |
13 | ″ | ″ | P. globosa |
14 | ″ | ″ | Phaeocystis |
15 | ″ | ″ | Phaeocystis pouchetii |
16 | ″ | ″ | Phaeocystis species |
17 | ″ | ″ | Phaeocystis spp |
18 | ″ | ″ | analysis |
19 | ″ | ″ | approach |
20 | ″ | ″ | assemblages |
21 | ″ | ″ | available data |
22 | ″ | ″ | biogeochemical processes |
23 | ″ | ″ | caution |
24 | ″ | ″ | cell types |
25 | ″ | ″ | cells |
26 | ″ | ″ | challenges |
27 | ″ | ″ | chemical signaling |
28 | ″ | ″ | colonies |
29 | ″ | ″ | community |
30 | ″ | ″ | copepods |
31 | ″ | ″ | crustaceans |
32 | ″ | ″ | culture |
33 | ″ | ″ | data |
34 | ″ | ″ | differences |
35 | ″ | ″ | different growth states |
36 | ″ | ″ | different life forms |
37 | ″ | ″ | different zooplankton |
38 | ″ | ″ | factors |
39 | ″ | ″ | feeding rate |
40 | ″ | ″ | form |
41 | ″ | ″ | formation |
42 | ″ | ″ | formation of colonies |
43 | ″ | ″ | future |
44 | ″ | ″ | future challenges |
45 | ″ | ″ | future studies |
46 | ″ | ″ | globosa |
47 | ″ | ″ | goal |
48 | ″ | ″ | grazing |
49 | ″ | ″ | grazing rates |
50 | ″ | ″ | growth state |
51 | ″ | ″ | key organisms |
52 | ″ | ″ | laboratory cultures |
53 | ″ | ″ | large copepods |
54 | ″ | ″ | life forms |
55 | ″ | ″ | major factor |
56 | ″ | ″ | mechanism |
57 | ″ | ″ | mixed prey |
58 | ″ | ″ | molecular tools |
59 | ″ | ″ | monoculture |
60 | ″ | ″ | mortality |
61 | ″ | ″ | natural assemblages |
62 | ″ | ″ | natural plankton |
63 | ″ | ″ | natural plankton communities |
64 | ″ | ″ | organisms |
65 | ″ | ″ | physiological differences |
66 | ″ | ″ | plankton |
67 | ″ | ″ | plankton communities |
68 | ″ | ″ | pouchetii |
69 | ″ | ″ | predation |
70 | ″ | ″ | predators |
71 | ″ | ″ | prey |
72 | ″ | ″ | prey size |
73 | ″ | ″ | process |
74 | ″ | ″ | promising approach |
75 | ″ | ″ | protists |
76 | ″ | ″ | protozooplankton |
77 | ″ | ″ | quantitative analysis |
78 | ″ | ″ | quantitative review |
79 | ″ | ″ | rate |
80 | ″ | ″ | report |
81 | ″ | ″ | review |
82 | ″ | ″ | signaling |
83 | ″ | ″ | situ |
84 | ″ | ″ | size |
85 | ″ | ″ | small copepods |
86 | ″ | ″ | species |
87 | ″ | ″ | specific feeding rates |
88 | ″ | ″ | specific mortality |
89 | ″ | ″ | spp |
90 | ″ | ″ | state |
91 | ″ | ″ | strains |
92 | ″ | ″ | study |
93 | ″ | ″ | tool |
94 | ″ | ″ | types |
95 | ″ | ″ | variation |
96 | ″ | ″ | zooplankton |
97 | ″ | ″ | zooplankton grazing |
98 | ″ | schema:name | Zooplankton grazing on Phaeocystis: a quantitative review and future challenges |
99 | ″ | schema:pagination | 147-172 |
100 | ″ | schema:productId | Neba44e97b2fa4e94ace59b9c96185725 |
101 | ″ | ″ | Nebf608e077a744abab60005bd611a01a |
102 | ″ | schema:publisher | N085a25a0ea5442078810dcd7767eace5 |
103 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003016593 |
104 | ″ | ″ | https://doi.org/10.1007/978-1-4020-6214-8_12 |
105 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
106 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
107 | ″ | schema:sdPublisher | N6cb7291259654501b939ce34d19595cf |
108 | ″ | schema:url | https://doi.org/10.1007/978-1-4020-6214-8_12 |
109 | ″ | sgo:license | sg:explorer/license/ |
110 | ″ | sgo:sdDataset | chapters |
111 | ″ | rdf:type | schema:Chapter |
112 | N085a25a0ea5442078810dcd7767eace5 | schema:name | Springer Nature |
113 | ″ | rdf:type | schema:Organisation |
114 | N09e1c222f1ba47b3ad88cc00554da47a | rdf:first | sg:person.0611240210.25 |
115 | ″ | rdf:rest | N663fe81d5a2a4109bfb4a04c61523e4b |
116 | N14b2d1c97fc2460dbeb32a9f9b47db0e | rdf:first | sg:person.010365554105.81 |
117 | ″ | rdf:rest | Na9622f476f0c49f98f4f004cf87f2b29 |
118 | N222606f5676c4ceb8c4526895014a87c | rdf:first | N51c374af873249a096950de4d1d44697 |
119 | ″ | rdf:rest | N8b341a213bc343d0bb6535a654fd774a |
120 | N3567e5d9e503465fb888af243a2980af | schema:familyName | Gieskes |
121 | ″ | schema:givenName | W. W. C. |
122 | ″ | rdf:type | schema:Person |
123 | N461176cf8aff40618c43bd04d94bf22e | rdf:first | N3567e5d9e503465fb888af243a2980af |
124 | ″ | rdf:rest | rdf:nil |
125 | N4c424669d15e4a8bb01108f9e864c334 | rdf:first | sg:person.013547166001.37 |
126 | ″ | rdf:rest | N09e1c222f1ba47b3ad88cc00554da47a |
127 | N51c374af873249a096950de4d1d44697 | schema:familyName | Lancelot |
128 | ″ | schema:givenName | C. |
129 | ″ | rdf:type | schema:Person |
130 | N54115fca6bd544c78d37b94c460450e2 | rdf:first | Ne6c010248f144582872f88d4c2822add |
131 | ″ | rdf:rest | Nb44a9df08c9f4accae4f6000628b28ab |
132 | N5e10c4c320cf4e279219b8d307ad544a | schema:familyName | Verity |
133 | ″ | schema:givenName | P. G. |
134 | ″ | rdf:type | schema:Person |
135 | N663fe81d5a2a4109bfb4a04c61523e4b | rdf:first | sg:person.01172144064.46 |
136 | ″ | rdf:rest | N14b2d1c97fc2460dbeb32a9f9b47db0e |
137 | N6b62ac38d3bd4b9eb73819b906635820 | rdf:first | sg:person.016620533411.47 |
138 | ″ | rdf:rest | Ncf777880e8a04a21b9f26efec0e51650 |
139 | N6cb7291259654501b939ce34d19595cf | schema:name | Springer Nature - SN SciGraph project |
140 | ″ | rdf:type | schema:Organization |
141 | N6fb6fb6977df46bfb8cc8913d07b1e2a | schema:isbn | 978-1-4020-6213-1 |
142 | ″ | ″ | 978-1-4020-6214-8 |
143 | ″ | schema:name | Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements |
144 | ″ | rdf:type | schema:Book |
145 | N8b341a213bc343d0bb6535a654fd774a | rdf:first | N5e10c4c320cf4e279219b8d307ad544a |
146 | ″ | rdf:rest | N461176cf8aff40618c43bd04d94bf22e |
147 | N9d0a3af69871446a8ff518f5e8226f5a | rdf:first | Nb473b00d74a447b48d00fe76008ddf22 |
148 | ″ | rdf:rest | N222606f5676c4ceb8c4526895014a87c |
149 | Na9622f476f0c49f98f4f004cf87f2b29 | rdf:first | sg:person.010541523045.86 |
150 | ″ | rdf:rest | N6b62ac38d3bd4b9eb73819b906635820 |
151 | Nb44a9df08c9f4accae4f6000628b28ab | rdf:first | Ne8a4bf89cf80426981e3ff29b490a494 |
152 | ″ | rdf:rest | N9d0a3af69871446a8ff518f5e8226f5a |
153 | Nb473b00d74a447b48d00fe76008ddf22 | schema:familyName | Belviso |
154 | ″ | schema:givenName | S. |
155 | ″ | rdf:type | schema:Person |
156 | Ncf777880e8a04a21b9f26efec0e51650 | rdf:first | sg:person.0646643156.89 |
157 | ″ | rdf:rest | rdf:nil |
158 | Ne6c010248f144582872f88d4c2822add | schema:familyName | van Leeuwe |
159 | ″ | schema:givenName | M. A. |
160 | ″ | rdf:type | schema:Person |
161 | Ne8a4bf89cf80426981e3ff29b490a494 | schema:familyName | Stefels |
162 | ″ | schema:givenName | J. |
163 | ″ | rdf:type | schema:Person |
164 | Neba44e97b2fa4e94ace59b9c96185725 | schema:name | dimensions_id |
165 | ″ | schema:value | pub.1003016593 |
166 | ″ | rdf:type | schema:PropertyValue |
167 | Nebf608e077a744abab60005bd611a01a | schema:name | doi |
168 | ″ | schema:value | 10.1007/978-1-4020-6214-8_12 |
169 | ″ | rdf:type | schema:PropertyValue |
170 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
171 | ″ | schema:name | Biological Sciences |
172 | ″ | rdf:type | schema:DefinedTerm |
173 | anzsrc-for:0602 | schema:inDefinedTermSet | anzsrc-for: |
174 | ″ | schema:name | Ecology |
175 | ″ | rdf:type | schema:DefinedTerm |
176 | sg:person.010365554105.81 | schema:affiliation | grid-institutes:None |
177 | ″ | schema:familyName | Dutz |
178 | ″ | schema:givenName | Jörg |
179 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365554105.81 |
180 | ″ | rdf:type | schema:Person |
181 | sg:person.010541523045.86 | schema:affiliation | grid-institutes:grid.5170.3 |
182 | ″ | schema:familyName | Koski |
183 | ″ | schema:givenName | Marja |
184 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541523045.86 |
185 | ″ | rdf:type | schema:Person |
186 | sg:person.01172144064.46 | schema:affiliation | grid-institutes:grid.8356.8 |
187 | ″ | schema:familyName | Steinke |
188 | ″ | schema:givenName | Michael |
189 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172144064.46 |
190 | ″ | rdf:type | schema:Person |
191 | sg:person.013547166001.37 | schema:affiliation | grid-institutes:grid.7914.b |
192 | ″ | schema:familyName | Nejstgaard |
193 | ″ | schema:givenName | Jens C. |
194 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013547166001.37 |
195 | ″ | rdf:type | schema:Person |
196 | sg:person.016620533411.47 | schema:affiliation | grid-institutes:grid.4444.0 |
197 | ″ | schema:familyName | Antajan |
198 | ″ | schema:givenName | Elvire |
199 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016620533411.47 |
200 | ″ | rdf:type | schema:Person |
201 | sg:person.0611240210.25 | schema:affiliation | grid-institutes:grid.264889.9 |
202 | ″ | schema:familyName | Tang |
203 | ″ | schema:givenName | Kam W. |
204 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611240210.25 |
205 | ″ | rdf:type | schema:Person |
206 | sg:person.0646643156.89 | schema:affiliation | grid-institutes:grid.261112.7 |
207 | ″ | schema:familyName | Long |
208 | ″ | schema:givenName | Jeremy D. |
209 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646643156.89 |
210 | ″ | rdf:type | schema:Person |
211 | grid-institutes:None | schema:alternateName | Institute for Baltic Sea Research, Seestraße 15, 18119, Rostock Warnemunde, Germany |
212 | ″ | schema:name | Institute for Baltic Sea Research, Seestraße 15, 18119, Rostock Warnemunde, Germany |
213 | ″ | rdf:type | schema:Organization |
214 | grid-institutes:grid.261112.7 | schema:alternateName | Northeastern University Marine Science Center, 430 Nahant Road, 01908, Nahant, MA, USA |
215 | ″ | schema:name | Northeastern University Marine Science Center, 430 Nahant Road, 01908, Nahant, MA, USA |
216 | ″ | rdf:type | schema:Organization |
217 | grid-institutes:grid.264889.9 | schema:alternateName | Virginia Institute of Marine Science, 1208 Greate Road, 23062, Gloucester Point, VA, USA |
218 | ″ | schema:name | Virginia Institute of Marine Science, 1208 Greate Road, 23062, Gloucester Point, VA, USA |
219 | ″ | rdf:type | schema:Organization |
220 | grid-institutes:grid.4444.0 | schema:alternateName | Laboratoire d’Océanographie de Villefranche, CNRS, 06230, Villefranche-sur-Mer, France |
221 | ″ | schema:name | Laboratoire d’Océanographie de Villefranche, CNRS, 06230, Villefranche-sur-Mer, France |
222 | ″ | ″ | Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie-Paris6, 06230, Villefranche-sur-Mer, France |
223 | ″ | rdf:type | schema:Organization |
224 | grid-institutes:grid.5170.3 | schema:alternateName | Danish Institute for Fisheries Research, Kavalergården 6, 2920, Charlottenlund, Denmark |
225 | ″ | schema:name | Danish Institute for Fisheries Research, Kavalergården 6, 2920, Charlottenlund, Denmark |
226 | ″ | rdf:type | schema:Organization |
227 | grid-institutes:grid.7914.b | schema:alternateName | UNIFOB AS, Department of Biology, University of Bergen, Bergen High Technology Centre, 5020, Bergen, Norway |
228 | ″ | schema:name | UNIFOB AS, Department of Biology, University of Bergen, Bergen High Technology Centre, 5020, Bergen, Norway |
229 | ″ | rdf:type | schema:Organization |
230 | grid-institutes:grid.8356.8 | schema:alternateName | Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK |
231 | ″ | schema:name | Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK |
232 | ″ | rdf:type | schema:Organization |