On the solution of a mathematical model of a viscoelastic bar View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Arpad Takači , Djurdjica Takači

ABSTRACT

A hyperbolic type equation with certain initial and boundary conditions, appropriate for application of the Mikusiński calculus, is considered. Similar problems appeared as mathematical models of the shock between a solid body and a viscoelastic bar.The exact solution of the corresponding problem in the field of Mikusiński operators is constructed, and the character and regularity of the operational function solution of the problem is analyzed. Then the solution of the starting problem is obtained as a finite sum of continuous functions. An algorithm for constructing an approximate solution is given, and an example is presented. More... »

PAGES

233-242

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20

DOI

http://dx.doi.org/10.1007/978-1-4020-5678-9_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035397904


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia", 
          "id": "http://www.grid.ac/institutes/grid.10822.39", 
          "name": [
            "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taka\u010di", 
        "givenName": "Arpad", 
        "id": "sg:person.014174010731.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174010731.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia", 
          "id": "http://www.grid.ac/institutes/grid.10822.39", 
          "name": [
            "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taka\u010di", 
        "givenName": "Djurdjica", 
        "id": "sg:person.011562126370.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562126370.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "A hyperbolic type equation with certain initial and boundary conditions, appropriate for application of the Mikusi\u0144ski calculus, is considered. Similar problems appeared as mathematical models of the shock between a solid body and a viscoelastic bar.The exact solution of the corresponding problem in the field of Mikusi\u0144ski operators is constructed, and the character and regularity of the operational function solution of the problem is analyzed. Then the solution of the starting problem is obtained as a finite sum of continuous functions. An algorithm for constructing an approximate solution is given, and an example is presented.", 
    "editor": [
      {
        "familyName": "Ta\u015f", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tenreiro Machado", 
        "givenName": "J. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Baleanu", 
        "givenName": "D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4020-5678-9_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-5677-2", 
        "978-1-4020-5678-9"
      ], 
      "name": "Mathematical Methods in Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "mathematical model", 
      "viscoelastic bar", 
      "hyperbolic type equations", 
      "Mikusi\u0144ski operators", 
      "approximate solution", 
      "function solutions", 
      "type equation", 
      "finite sum", 
      "exact solution", 
      "continuous functions", 
      "corresponding problem", 
      "boundary conditions", 
      "starting problem", 
      "similar problems", 
      "problem", 
      "solution", 
      "solid body", 
      "equations", 
      "operators", 
      "calculus", 
      "regularity", 
      "algorithm", 
      "model", 
      "sum", 
      "bar", 
      "applications", 
      "function", 
      "field", 
      "conditions", 
      "character", 
      "example", 
      "body", 
      "shock", 
      "Mikusi\u0144ski calculus", 
      "operational function solution"
    ], 
    "name": "On the solution of a mathematical model of a viscoelastic bar", 
    "pagination": "233-242", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035397904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4020-5678-9_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4020-5678-9_20", 
      "https://app.dimensions.ai/details/publication/pub.1035397904"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_116.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4020-5678-9_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4020-5678-9_20 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N3408affeaa5040faad762c698181d047
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description A hyperbolic type equation with certain initial and boundary conditions, appropriate for application of the Mikusiński calculus, is considered. Similar problems appeared as mathematical models of the shock between a solid body and a viscoelastic bar.The exact solution of the corresponding problem in the field of Mikusiński operators is constructed, and the character and regularity of the operational function solution of the problem is analyzed. Then the solution of the starting problem is obtained as a finite sum of continuous functions. An algorithm for constructing an approximate solution is given, and an example is presented.
7 schema:editor N1939c5c6171743d3a0a4c476a9293e38
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N41a6e155450f4d678fb7ec897388e0af
12 schema:keywords Mikusiński calculus
13 Mikusiński operators
14 algorithm
15 applications
16 approximate solution
17 bar
18 body
19 boundary conditions
20 calculus
21 character
22 conditions
23 continuous functions
24 corresponding problem
25 equations
26 exact solution
27 example
28 field
29 finite sum
30 function
31 function solutions
32 hyperbolic type equations
33 mathematical model
34 model
35 operational function solution
36 operators
37 problem
38 regularity
39 shock
40 similar problems
41 solid body
42 solution
43 starting problem
44 sum
45 type equation
46 viscoelastic bar
47 schema:name On the solution of a mathematical model of a viscoelastic bar
48 schema:pagination 233-242
49 schema:productId Na2b601b9868c47fca333df93bea53f7e
50 Nf49d588bac4144bc9cb730853205246b
51 schema:publisher Nb9d16d4a68f24bd78d0583460a47c1dc
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035397904
53 https://doi.org/10.1007/978-1-4020-5678-9_20
54 schema:sdDatePublished 2022-01-01T19:07
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nfd8340173d97414ba869eb1a5b48647a
57 schema:url https://doi.org/10.1007/978-1-4020-5678-9_20
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N1939c5c6171743d3a0a4c476a9293e38 rdf:first N57e20206039140179c0416a2646cb814
62 rdf:rest Ne9588379b5c04cbdb9802faf253548a7
63 N3408affeaa5040faad762c698181d047 rdf:first sg:person.014174010731.21
64 rdf:rest N3c96f3d90def45739595fc1cb1fa09b1
65 N39cb875452954cca87fa9d866959cbb3 schema:familyName Baleanu
66 schema:givenName D.
67 rdf:type schema:Person
68 N3c96f3d90def45739595fc1cb1fa09b1 rdf:first sg:person.011562126370.27
69 rdf:rest rdf:nil
70 N41a6e155450f4d678fb7ec897388e0af schema:isbn 978-1-4020-5677-2
71 978-1-4020-5678-9
72 schema:name Mathematical Methods in Engineering
73 rdf:type schema:Book
74 N57e20206039140179c0416a2646cb814 schema:familyName Taş
75 schema:givenName K.
76 rdf:type schema:Person
77 N6dc797c49af046b5b7efa272fbc65912 rdf:first N39cb875452954cca87fa9d866959cbb3
78 rdf:rest rdf:nil
79 Na2b601b9868c47fca333df93bea53f7e schema:name dimensions_id
80 schema:value pub.1035397904
81 rdf:type schema:PropertyValue
82 Na759d6aea47747bba341e7f2a186be1f schema:familyName Tenreiro Machado
83 schema:givenName J. A.
84 rdf:type schema:Person
85 Nb9d16d4a68f24bd78d0583460a47c1dc schema:name Springer Nature
86 rdf:type schema:Organisation
87 Ne9588379b5c04cbdb9802faf253548a7 rdf:first Na759d6aea47747bba341e7f2a186be1f
88 rdf:rest N6dc797c49af046b5b7efa272fbc65912
89 Nf49d588bac4144bc9cb730853205246b schema:name doi
90 schema:value 10.1007/978-1-4020-5678-9_20
91 rdf:type schema:PropertyValue
92 Nfd8340173d97414ba869eb1a5b48647a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
98 schema:name Applied Mathematics
99 rdf:type schema:DefinedTerm
100 sg:person.011562126370.27 schema:affiliation grid-institutes:grid.10822.39
101 schema:familyName Takači
102 schema:givenName Djurdjica
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562126370.27
104 rdf:type schema:Person
105 sg:person.014174010731.21 schema:affiliation grid-institutes:grid.10822.39
106 schema:familyName Takači
107 schema:givenName Arpad
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174010731.21
109 rdf:type schema:Person
110 grid-institutes:grid.10822.39 schema:alternateName Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovića 4, 21000, Novi Sad, Serbia
111 schema:name Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovića 4, 21000, Novi Sad, Serbia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...