On the solution of a mathematical model of a viscoelastic bar View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Arpad Takači , Djurdjica Takači

ABSTRACT

A hyperbolic type equation with certain initial and boundary conditions, appropriate for application of the Mikusiński calculus, is considered. Similar problems appeared as mathematical models of the shock between a solid body and a viscoelastic bar.The exact solution of the corresponding problem in the field of Mikusiński operators is constructed, and the character and regularity of the operational function solution of the problem is analyzed. Then the solution of the starting problem is obtained as a finite sum of continuous functions. An algorithm for constructing an approximate solution is given, and an example is presented. More... »

PAGES

233-242

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20

DOI

http://dx.doi.org/10.1007/978-1-4020-5678-9_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035397904


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia", 
          "id": "http://www.grid.ac/institutes/grid.10822.39", 
          "name": [
            "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taka\u010di", 
        "givenName": "Arpad", 
        "id": "sg:person.014174010731.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174010731.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia", 
          "id": "http://www.grid.ac/institutes/grid.10822.39", 
          "name": [
            "Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovi\u0107a 4, 21000, Novi Sad, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taka\u010di", 
        "givenName": "Djurdjica", 
        "id": "sg:person.011562126370.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562126370.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "A hyperbolic type equation with certain initial and boundary conditions, appropriate for application of the Mikusi\u0144ski calculus, is considered. Similar problems appeared as mathematical models of the shock between a solid body and a viscoelastic bar.The exact solution of the corresponding problem in the field of Mikusi\u0144ski operators is constructed, and the character and regularity of the operational function solution of the problem is analyzed. Then the solution of the starting problem is obtained as a finite sum of continuous functions. An algorithm for constructing an approximate solution is given, and an example is presented.", 
    "editor": [
      {
        "familyName": "Ta\u015f", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tenreiro Machado", 
        "givenName": "J. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Baleanu", 
        "givenName": "D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4020-5678-9_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-5677-2", 
        "978-1-4020-5678-9"
      ], 
      "name": "Mathematical Methods in Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "mathematical model", 
      "viscoelastic bar", 
      "hyperbolic-type equations", 
      "Mikusi\u0144ski operators", 
      "approximate solution", 
      "function solutions", 
      "exact solution", 
      "type equation", 
      "finite sum", 
      "continuous functions", 
      "corresponding problem", 
      "boundary conditions", 
      "solid body", 
      "starting problem", 
      "similar problems", 
      "problem", 
      "solution", 
      "equations", 
      "operators", 
      "calculus", 
      "model", 
      "algorithm", 
      "regularity", 
      "sum", 
      "field", 
      "applications", 
      "function", 
      "conditions", 
      "bar", 
      "character", 
      "shock", 
      "body", 
      "example"
    ], 
    "name": "On the solution of a mathematical model of a viscoelastic bar", 
    "pagination": "233-242", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035397904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4020-5678-9_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4020-5678-9_20", 
      "https://app.dimensions.ai/details/publication/pub.1035397904"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_230.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4020-5678-9_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-5678-9_20'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4020-5678-9_20 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N5ebbeb5900594702bf7fb56ce128df19
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description A hyperbolic type equation with certain initial and boundary conditions, appropriate for application of the Mikusiński calculus, is considered. Similar problems appeared as mathematical models of the shock between a solid body and a viscoelastic bar.The exact solution of the corresponding problem in the field of Mikusiński operators is constructed, and the character and regularity of the operational function solution of the problem is analyzed. Then the solution of the starting problem is obtained as a finite sum of continuous functions. An algorithm for constructing an approximate solution is given, and an example is presented.
7 schema:editor Nd85c12ad127d4a12aa4fe9867581c09a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb7f97ca5b4c44638ac0a99d02fe3a5b8
12 schema:keywords Mikusiński operators
13 algorithm
14 applications
15 approximate solution
16 bar
17 body
18 boundary conditions
19 calculus
20 character
21 conditions
22 continuous functions
23 corresponding problem
24 equations
25 exact solution
26 example
27 field
28 finite sum
29 function
30 function solutions
31 hyperbolic-type equations
32 mathematical model
33 model
34 operators
35 problem
36 regularity
37 shock
38 similar problems
39 solid body
40 solution
41 starting problem
42 sum
43 type equation
44 viscoelastic bar
45 schema:name On the solution of a mathematical model of a viscoelastic bar
46 schema:pagination 233-242
47 schema:productId N24fd5f318b2f4938b0feba660eb843ef
48 Nbfa696cdbfa34b04924f1d931a720753
49 schema:publisher Nd8715644a34f43019a414d720e8b08ed
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035397904
51 https://doi.org/10.1007/978-1-4020-5678-9_20
52 schema:sdDatePublished 2022-05-20T07:44
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N344eefdc74da4c57a4d68d22f81fbefb
55 schema:url https://doi.org/10.1007/978-1-4020-5678-9_20
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N017ffec6fdca47119e0036bd5741e836 rdf:first N6fa2979539504e6cb87c9a6eed914076
60 rdf:rest rdf:nil
61 N24fd5f318b2f4938b0feba660eb843ef schema:name dimensions_id
62 schema:value pub.1035397904
63 rdf:type schema:PropertyValue
64 N344eefdc74da4c57a4d68d22f81fbefb schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N589710a4336c4da5b99296be143b5e7b schema:familyName Taş
67 schema:givenName K.
68 rdf:type schema:Person
69 N5ebbeb5900594702bf7fb56ce128df19 rdf:first sg:person.014174010731.21
70 rdf:rest Nf4f6c4c66f024a02b44e34a153757b82
71 N6fa2979539504e6cb87c9a6eed914076 schema:familyName Baleanu
72 schema:givenName D.
73 rdf:type schema:Person
74 N7b0cfe30ea9a4b55aa7db25195a5093d rdf:first Nf23ee1d8f5814a4d9131d213f1ff4294
75 rdf:rest N017ffec6fdca47119e0036bd5741e836
76 Nb7f97ca5b4c44638ac0a99d02fe3a5b8 schema:isbn 978-1-4020-5677-2
77 978-1-4020-5678-9
78 schema:name Mathematical Methods in Engineering
79 rdf:type schema:Book
80 Nbfa696cdbfa34b04924f1d931a720753 schema:name doi
81 schema:value 10.1007/978-1-4020-5678-9_20
82 rdf:type schema:PropertyValue
83 Nd85c12ad127d4a12aa4fe9867581c09a rdf:first N589710a4336c4da5b99296be143b5e7b
84 rdf:rest N7b0cfe30ea9a4b55aa7db25195a5093d
85 Nd8715644a34f43019a414d720e8b08ed schema:name Springer Nature
86 rdf:type schema:Organisation
87 Nf23ee1d8f5814a4d9131d213f1ff4294 schema:familyName Tenreiro Machado
88 schema:givenName J. A.
89 rdf:type schema:Person
90 Nf4f6c4c66f024a02b44e34a153757b82 rdf:first sg:person.011562126370.27
91 rdf:rest rdf:nil
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
96 schema:name Applied Mathematics
97 rdf:type schema:DefinedTerm
98 sg:person.011562126370.27 schema:affiliation grid-institutes:grid.10822.39
99 schema:familyName Takači
100 schema:givenName Djurdjica
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562126370.27
102 rdf:type schema:Person
103 sg:person.014174010731.21 schema:affiliation grid-institutes:grid.10822.39
104 schema:familyName Takači
105 schema:givenName Arpad
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174010731.21
107 rdf:type schema:Person
108 grid-institutes:grid.10822.39 schema:alternateName Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovića 4, 21000, Novi Sad, Serbia
109 schema:name Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D. Obradovića 4, 21000, Novi Sad, Serbia
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...