Ontology type: schema:Chapter
2006
AUTHORSFabrice Rappaport , Bruce A. Diner , Kevin Redding
ABSTRACTAll known photosynthetic reaction centers have symmetric structures, using two similar or identical integral membrane subunits to form a dimeric core, which binds the cofactors through which electrons are shuttled across the membrane. This symmetric arrangement gives rise to two similar branches of cofactors, down which light-driven electron transfer could proceed. The first three members of each branch are chlorins, while the third is a quinone. It is known that the initial electron transfer occurs almost exclusively along one of the two branches in the wellcharacterized Type 2 reaction centers, although the origins of this strong asymmetry are still debated. Photosystem I is the best characterized representative of the Type 1 reaction centers, but many aspects of electron transfer directionality remain unresolved. Recent time-resolved absorption studies suggest that electron transfer can make use of both cofactor branches of Photosystem I at room temperature. Here, we will present the results that led to this proposal and discuss this model in the light of the recent studies aimed at testing its validity. More... »
PAGES223-244
Photosystem I
ISBN
978-1-4020-4255-3
978-1-4020-4256-0
http://scigraph.springernature.com/pub.10.1007/978-1-4020-4256-0_16
DOIhttp://dx.doi.org/10.1007/978-1-4020-4256-0_16
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036589238
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de Physiologie membranaire et mol\u00e9culaire du Chloroplaste, CNRS-Univ., UMR 7141, Paris, France",
"id": "http://www.grid.ac/institutes/grid.462626.2",
"name": [
"Laboratoire de Physiologie membranaire et mol\u00e9culaire du Chloroplaste, CNRS-Univ., UMR 7141, Paris, France"
],
"type": "Organization"
},
"familyName": "Rappaport",
"givenName": "Fabrice",
"id": "sg:person.01103560265.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Central Research and Development, Experimental Station, E. I. du Pont de Nemours & Co., DE 19880-017, Wilmington, USA",
"id": "http://www.grid.ac/institutes/grid.416832.a",
"name": [
"Central Research and Development, Experimental Station, E. I. du Pont de Nemours & Co., DE 19880-017, Wilmington, USA"
],
"type": "Organization"
},
"familyName": "Diner",
"givenName": "Bruce A.",
"id": "sg:person.01010573423.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010573423.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry, University of Alabama, 35487-0336, Tuscaloosa, AL, USA",
"id": "http://www.grid.ac/institutes/grid.411015.0",
"name": [
"Department of Chemistry, University of Alabama, 35487-0336, Tuscaloosa, AL, USA"
],
"type": "Organization"
},
"familyName": "Redding",
"givenName": "Kevin",
"id": "sg:person.01272503314.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272503314.34"
],
"type": "Person"
}
],
"datePublished": "2006",
"datePublishedReg": "2006-01-01",
"description": "All known photosynthetic reaction centers have symmetric structures, using two similar or identical integral membrane subunits to form a dimeric core, which binds the cofactors through which electrons are shuttled across the membrane. This symmetric arrangement gives rise to two similar branches of cofactors, down which light-driven electron transfer could proceed. The first three members of each branch are chlorins, while the third is a quinone. It is known that the initial electron transfer occurs almost exclusively along one of the two branches in the wellcharacterized Type 2 reaction centers, although the origins of this strong asymmetry are still debated. Photosystem I is the best characterized representative of the Type 1 reaction centers, but many aspects of electron transfer directionality remain unresolved. Recent time-resolved absorption studies suggest that electron transfer can make use of both cofactor branches of Photosystem I at room temperature. Here, we will present the results that led to this proposal and discuss this model in the light of the recent studies aimed at testing its validity.",
"editor": [
{
"familyName": "Golbeck",
"givenName": "John H.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4020-4256-0_16",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4020-4255-3",
"978-1-4020-4256-0"
],
"name": "Photosystem I",
"type": "Book"
},
"keywords": [
"time-resolved absorption studies",
"reaction centers",
"photosystem I",
"light-driven electron transfer",
"electron transfer",
"photosynthetic reaction centers",
"optical measurements",
"type-1 reaction centers",
"cofactor branches",
"absorption studies",
"strong asymmetry",
"secondary electron transfer",
"room temperature",
"initial electron transfer",
"type-2 reaction centers",
"symmetric structure",
"symmetric arrangement",
"electrons",
"transfer",
"light",
"similar branches",
"measurements",
"asymmetry",
"integral membrane subunits",
"dimeric core",
"temperature",
"structure",
"center",
"directionality",
"core",
"branches",
"arrangement",
"origin",
"chlorin",
"model",
"results",
"proposal",
"validity",
"membrane",
"study",
"use",
"Recent studies",
"aspects",
"cofactor",
"membrane subunits",
"quinone",
"representatives",
"third",
"members",
"subunits"
],
"name": "Optical Measurements of Secondary Electron Transfer in Photosystem I",
"pagination": "223-244",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036589238"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4020-4256-0_16"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4020-4256-0_16",
"https://app.dimensions.ai/details/publication/pub.1036589238"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_137.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4020-4256-0_16"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-4256-0_16'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-4256-0_16'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-4256-0_16'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4020-4256-0_16'
This table displays all metadata directly associated to this object as RDF triples.
130 TRIPLES
23 PREDICATES
76 URIs
69 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4020-4256-0_16 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | Neb1c76f5c8314655bc055a11f64a824e |
4 | ″ | schema:datePublished | 2006 |
5 | ″ | schema:datePublishedReg | 2006-01-01 |
6 | ″ | schema:description | All known photosynthetic reaction centers have symmetric structures, using two similar or identical integral membrane subunits to form a dimeric core, which binds the cofactors through which electrons are shuttled across the membrane. This symmetric arrangement gives rise to two similar branches of cofactors, down which light-driven electron transfer could proceed. The first three members of each branch are chlorins, while the third is a quinone. It is known that the initial electron transfer occurs almost exclusively along one of the two branches in the wellcharacterized Type 2 reaction centers, although the origins of this strong asymmetry are still debated. Photosystem I is the best characterized representative of the Type 1 reaction centers, but many aspects of electron transfer directionality remain unresolved. Recent time-resolved absorption studies suggest that electron transfer can make use of both cofactor branches of Photosystem I at room temperature. Here, we will present the results that led to this proposal and discuss this model in the light of the recent studies aimed at testing its validity. |
7 | ″ | schema:editor | N540fc22d49c4439ebf0e943add235ccc |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nd1d15fe98db84f48a933b31b3c1e7d7a |
12 | ″ | schema:keywords | Recent studies |
13 | ″ | ″ | absorption studies |
14 | ″ | ″ | arrangement |
15 | ″ | ″ | aspects |
16 | ″ | ″ | asymmetry |
17 | ″ | ″ | branches |
18 | ″ | ″ | center |
19 | ″ | ″ | chlorin |
20 | ″ | ″ | cofactor |
21 | ″ | ″ | cofactor branches |
22 | ″ | ″ | core |
23 | ″ | ″ | dimeric core |
24 | ″ | ″ | directionality |
25 | ″ | ″ | electron transfer |
26 | ″ | ″ | electrons |
27 | ″ | ″ | initial electron transfer |
28 | ″ | ″ | integral membrane subunits |
29 | ″ | ″ | light |
30 | ″ | ″ | light-driven electron transfer |
31 | ″ | ″ | measurements |
32 | ″ | ″ | members |
33 | ″ | ″ | membrane |
34 | ″ | ″ | membrane subunits |
35 | ″ | ″ | model |
36 | ″ | ″ | optical measurements |
37 | ″ | ″ | origin |
38 | ″ | ″ | photosynthetic reaction centers |
39 | ″ | ″ | photosystem I |
40 | ″ | ″ | proposal |
41 | ″ | ″ | quinone |
42 | ″ | ″ | reaction centers |
43 | ″ | ″ | representatives |
44 | ″ | ″ | results |
45 | ″ | ″ | room temperature |
46 | ″ | ″ | secondary electron transfer |
47 | ″ | ″ | similar branches |
48 | ″ | ″ | strong asymmetry |
49 | ″ | ″ | structure |
50 | ″ | ″ | study |
51 | ″ | ″ | subunits |
52 | ″ | ″ | symmetric arrangement |
53 | ″ | ″ | symmetric structure |
54 | ″ | ″ | temperature |
55 | ″ | ″ | third |
56 | ″ | ″ | time-resolved absorption studies |
57 | ″ | ″ | transfer |
58 | ″ | ″ | type-1 reaction centers |
59 | ″ | ″ | type-2 reaction centers |
60 | ″ | ″ | use |
61 | ″ | ″ | validity |
62 | ″ | schema:name | Optical Measurements of Secondary Electron Transfer in Photosystem I |
63 | ″ | schema:pagination | 223-244 |
64 | ″ | schema:productId | N94d8a9953bda4600a1d67fdc502f3233 |
65 | ″ | ″ | Nb474a07a6ed640619928034493fef208 |
66 | ″ | schema:publisher | N17ad5424692f496b858a3aff983eb312 |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036589238 |
68 | ″ | ″ | https://doi.org/10.1007/978-1-4020-4256-0_16 |
69 | ″ | schema:sdDatePublished | 2022-05-10T10:38 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N78713557adbd40b28e52c1231e859150 |
72 | ″ | schema:url | https://doi.org/10.1007/978-1-4020-4256-0_16 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | chapters |
75 | ″ | rdf:type | schema:Chapter |
76 | N17ad5424692f496b858a3aff983eb312 | schema:name | Springer Nature |
77 | ″ | rdf:type | schema:Organisation |
78 | N492c0f5534734b288d1d3555931ff3e7 | rdf:first | sg:person.01010573423.43 |
79 | ″ | rdf:rest | N6b4717293b424778ba7d9363dc6aeabf |
80 | N540fc22d49c4439ebf0e943add235ccc | rdf:first | Nae502f81b7054a439512fb28b3f3af8b |
81 | ″ | rdf:rest | rdf:nil |
82 | N6b4717293b424778ba7d9363dc6aeabf | rdf:first | sg:person.01272503314.34 |
83 | ″ | rdf:rest | rdf:nil |
84 | N78713557adbd40b28e52c1231e859150 | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | N94d8a9953bda4600a1d67fdc502f3233 | schema:name | dimensions_id |
87 | ″ | schema:value | pub.1036589238 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | Nae502f81b7054a439512fb28b3f3af8b | schema:familyName | Golbeck |
90 | ″ | schema:givenName | John H. |
91 | ″ | rdf:type | schema:Person |
92 | Nb474a07a6ed640619928034493fef208 | schema:name | doi |
93 | ″ | schema:value | 10.1007/978-1-4020-4256-0_16 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Nd1d15fe98db84f48a933b31b3c1e7d7a | schema:isbn | 978-1-4020-4255-3 |
96 | ″ | ″ | 978-1-4020-4256-0 |
97 | ″ | schema:name | Photosystem I |
98 | ″ | rdf:type | schema:Book |
99 | Neb1c76f5c8314655bc055a11f64a824e | rdf:first | sg:person.01103560265.56 |
100 | ″ | rdf:rest | N492c0f5534734b288d1d3555931ff3e7 |
101 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Physical Sciences |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Other Physical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:person.01010573423.43 | schema:affiliation | grid-institutes:grid.416832.a |
108 | ″ | schema:familyName | Diner |
109 | ″ | schema:givenName | Bruce A. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010573423.43 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.01103560265.56 | schema:affiliation | grid-institutes:grid.462626.2 |
113 | ″ | schema:familyName | Rappaport |
114 | ″ | schema:givenName | Fabrice |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.01272503314.34 | schema:affiliation | grid-institutes:grid.411015.0 |
118 | ″ | schema:familyName | Redding |
119 | ″ | schema:givenName | Kevin |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272503314.34 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:grid.411015.0 | schema:alternateName | Department of Chemistry, University of Alabama, 35487-0336, Tuscaloosa, AL, USA |
123 | ″ | schema:name | Department of Chemistry, University of Alabama, 35487-0336, Tuscaloosa, AL, USA |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.416832.a | schema:alternateName | Central Research and Development, Experimental Station, E. I. du Pont de Nemours & Co., DE 19880-017, Wilmington, USA |
126 | ″ | schema:name | Central Research and Development, Experimental Station, E. I. du Pont de Nemours & Co., DE 19880-017, Wilmington, USA |
127 | ″ | rdf:type | schema:Organization |
128 | grid-institutes:grid.462626.2 | schema:alternateName | Laboratoire de Physiologie membranaire et moléculaire du Chloroplaste, CNRS-Univ., UMR 7141, Paris, France |
129 | ″ | schema:name | Laboratoire de Physiologie membranaire et moléculaire du Chloroplaste, CNRS-Univ., UMR 7141, Paris, France |
130 | ″ | rdf:type | schema:Organization |