Increase the Power of Epigenome-Wide Association Testing Using ICC-Based Hypothesis Weighting View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2022-05-04

AUTHORS

Bowen Cui , Shuya Cui , Jinyan Huang , Jun Chen

ABSTRACT

For large-scale hypothesis testing such as epigenome-wide association testing, adaptively focusing power on the more promising hypotheses can lead to a much more powerful multiple testing procedure. In this chapter, we introduce a multiple testing procedure that weights each hypothesis based on the intraclass correlation coefficient (ICC), a measure of “noisiness” of CpG methylation measurement, to increase the power of epigenome-wide association testing. Compared to the traditional multiple testing procedure on a filtered CpG set, the proposed procedure circumvents the difficulty to determine the optimal ICC cutoff value and is overall more powerful. We illustrate the procedure and compare the power to classical multiple testing procedures using an example data. More... »

PAGES

113-122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-0716-1994-0_9

DOI

http://dx.doi.org/10.1007/978-1-0716-1994-0_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147574186

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35505211


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Bowen", 
        "id": "sg:person.07425033303.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07425033303.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University School of Medicine, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Shanghai Jiao Tong University School of Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Shuya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Jinyan", 
        "id": "sg:person.01363744764.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363744764.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2022-05-04", 
    "datePublishedReg": "2022-05-04", 
    "description": "For large-scale hypothesis testing such as epigenome-wide association testing, adaptively focusing power on the more promising hypotheses can lead to a much more powerful multiple testing procedure. In this chapter, we introduce a multiple testing procedure that weights each hypothesis based on the intraclass correlation coefficient (ICC), a measure of \u201cnoisiness\u201d of CpG methylation measurement, to increase the power of epigenome-wide association testing. Compared to the traditional multiple testing procedure on a filtered CpG set, the proposed procedure circumvents the difficulty to determine the optimal ICC cutoff value and is overall more powerful. We illustrate the procedure and compare the power to classical multiple testing procedures using an example data.", 
    "editor": [
      {
        "familyName": "Guan", 
        "givenName": "Weihua", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-0716-1994-0_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-0716-1993-3", 
        "978-1-0716-1994-0"
      ], 
      "name": "Epigenome-Wide Association Studies", 
      "type": "Book"
    }, 
    "keywords": [
      "intraclass correlation coefficient", 
      "cutoff value", 
      "association testing", 
      "testing", 
      "promising hypotheses", 
      "procedure", 
      "correlation coefficient", 
      "hypothesis", 
      "methylation measurements", 
      "testing procedures", 
      "measures", 
      "difficulties", 
      "data", 
      "multiple testing procedures", 
      "large-scale hypothesis testing", 
      "values", 
      "measurements", 
      "weighting", 
      "hypothesis testing", 
      "chapter", 
      "power", 
      "coefficient", 
      "noisiness", 
      "example data", 
      "set"
    ], 
    "name": "Increase the Power of Epigenome-Wide Association Testing Using ICC-Based Hypothesis Weighting", 
    "pagination": "113-122", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147574186"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-0716-1994-0_9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35505211"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-0716-1994-0_9", 
      "https://app.dimensions.ai/details/publication/pub.1147574186"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_70.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-0716-1994-0_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1994-0_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1994-0_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1994-0_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1994-0_9'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      53 URIs      44 LITERALS      10 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-0716-1994-0_9 schema:about N92323c01381e42b59a3a6ca12677dc03
2 Nf79f11cfcc0e4d7c99002ae954ca10a5
3 anzsrc-for:03
4 anzsrc-for:0399
5 anzsrc-for:06
6 anzsrc-for:0601
7 schema:author Nd14814716cc945c0bc8e046aaf7f62a8
8 schema:datePublished 2022-05-04
9 schema:datePublishedReg 2022-05-04
10 schema:description For large-scale hypothesis testing such as epigenome-wide association testing, adaptively focusing power on the more promising hypotheses can lead to a much more powerful multiple testing procedure. In this chapter, we introduce a multiple testing procedure that weights each hypothesis based on the intraclass correlation coefficient (ICC), a measure of “noisiness” of CpG methylation measurement, to increase the power of epigenome-wide association testing. Compared to the traditional multiple testing procedure on a filtered CpG set, the proposed procedure circumvents the difficulty to determine the optimal ICC cutoff value and is overall more powerful. We illustrate the procedure and compare the power to classical multiple testing procedures using an example data.
11 schema:editor N3e9fcb3f084445e49a441c96a7394c35
12 schema:genre chapter
13 schema:isAccessibleForFree false
14 schema:isPartOf N0f6531989903410580831a008922a7f7
15 schema:keywords association testing
16 chapter
17 coefficient
18 correlation coefficient
19 cutoff value
20 data
21 difficulties
22 example data
23 hypothesis
24 hypothesis testing
25 intraclass correlation coefficient
26 large-scale hypothesis testing
27 measurements
28 measures
29 methylation measurements
30 multiple testing procedures
31 noisiness
32 power
33 procedure
34 promising hypotheses
35 set
36 testing
37 testing procedures
38 values
39 weighting
40 schema:name Increase the Power of Epigenome-Wide Association Testing Using ICC-Based Hypothesis Weighting
41 schema:pagination 113-122
42 schema:productId N204ecca7a9554e3f8d37988ed4fdc0ac
43 N81d8423b112549bbb6da8aa829b6d86a
44 N8211f6406d04429f82682670c5bb34b4
45 schema:publisher N22f51fe78724418e8441d3f811af7b1c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147574186
47 https://doi.org/10.1007/978-1-0716-1994-0_9
48 schema:sdDatePublished 2022-09-02T16:17
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N9dd949648e2d4edba6d3387b2e7d537c
51 schema:url https://doi.org/10.1007/978-1-0716-1994-0_9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N0f6531989903410580831a008922a7f7 schema:isbn 978-1-0716-1993-3
56 978-1-0716-1994-0
57 schema:name Epigenome-Wide Association Studies
58 rdf:type schema:Book
59 N204ecca7a9554e3f8d37988ed4fdc0ac schema:name dimensions_id
60 schema:value pub.1147574186
61 rdf:type schema:PropertyValue
62 N22f51fe78724418e8441d3f811af7b1c schema:name Springer Nature
63 rdf:type schema:Organisation
64 N3adcb608f7b34ba5ad5fd286031510e4 rdf:first sg:person.01023412627.52
65 rdf:rest rdf:nil
66 N3e9fcb3f084445e49a441c96a7394c35 rdf:first Ncf4f911c04b7473d8a957d3a1ae36d96
67 rdf:rest rdf:nil
68 N5385ce5082c9494bb13577d194ebba4b rdf:first sg:person.01363744764.18
69 rdf:rest N3adcb608f7b34ba5ad5fd286031510e4
70 N81d8423b112549bbb6da8aa829b6d86a schema:name pubmed_id
71 schema:value 35505211
72 rdf:type schema:PropertyValue
73 N8211f6406d04429f82682670c5bb34b4 schema:name doi
74 schema:value 10.1007/978-1-0716-1994-0_9
75 rdf:type schema:PropertyValue
76 N92323c01381e42b59a3a6ca12677dc03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Research Design
78 rdf:type schema:DefinedTerm
79 N9dd949648e2d4edba6d3387b2e7d537c schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nbc88281199eb4d36b111fe1812e8d1cf schema:affiliation grid-institutes:grid.16821.3c
82 schema:familyName Cui
83 schema:givenName Shuya
84 rdf:type schema:Person
85 Ncf4f911c04b7473d8a957d3a1ae36d96 schema:familyName Guan
86 schema:givenName Weihua
87 rdf:type schema:Person
88 Nd14814716cc945c0bc8e046aaf7f62a8 rdf:first sg:person.07425033303.37
89 rdf:rest Nec96cc9de0be42a1bb2d2ee1eb3a720e
90 Nec96cc9de0be42a1bb2d2ee1eb3a720e rdf:first Nbc88281199eb4d36b111fe1812e8d1cf
91 rdf:rest N5385ce5082c9494bb13577d194ebba4b
92 Nf79f11cfcc0e4d7c99002ae954ca10a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Epigenome
94 rdf:type schema:DefinedTerm
95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
96 schema:name Chemical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
99 schema:name Other Chemical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biological Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biochemistry and Cell Biology
106 rdf:type schema:DefinedTerm
107 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
108 schema:familyName Chen
109 schema:givenName Jun
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
111 rdf:type schema:Person
112 sg:person.01363744764.18 schema:affiliation grid-institutes:grid.16821.3c
113 schema:familyName Huang
114 schema:givenName Jinyan
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363744764.18
116 rdf:type schema:Person
117 sg:person.07425033303.37 schema:affiliation grid-institutes:grid.16821.3c
118 schema:familyName Cui
119 schema:givenName Bowen
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07425033303.37
121 rdf:type schema:Person
122 grid-institutes:grid.16821.3c schema:alternateName Shanghai Jiao Tong University School of Medicine, Shanghai, China
123 State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
124 schema:name Shanghai Jiao Tong University School of Medicine, Shanghai, China
125 State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
126 rdf:type schema:Organization
127 grid-institutes:grid.66875.3a schema:alternateName Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
128 schema:name Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...