Practical Considerations and Challenges When Conducting an Individual Participant Data (IPD) Meta-Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-09-23

AUTHORS

Sarah J. Nevitt , Catrin Tudur Smith

ABSTRACT

This chapter provides a broad overview of the use of individual participant (sometimes referred to as patient) data (IPDIndividual participant data (IPD)) within meta-analyses, the associated advantages of using IPDIndividual participant data (IPD) in meta-analysis compared to aggregate dataAggregate data, and when IPDIndividual participant data (IPD) should be used in meta-analysis.This chapter also outlines the steps of conducting an IPD meta-analysisIPD meta-analysis, with practical guidance relating to requesting and obtaining IPDIndividual participant data (IPD) for meta-analysis. Challenges that can be associated with conducting an IPDIndividual participant data (IPD) meta-analysis are also discussed, including consideration of availability bias, when a subset of the relevant IPDIndividual participant data (IPD) is not available for meta-analysis. More... »

PAGES

263-278

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-0716-1566-9_16

DOI

http://dx.doi.org/10.1007/978-1-0716-1566-9_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141301423

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34550596


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meta-Analysis as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Health Data Science, University of Liverpool, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Health Data Science, University of Liverpool, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevitt", 
        "givenName": "Sarah J.", 
        "id": "sg:person.014257575147.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257575147.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Data Science, University of Liverpool, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Health Data Science, University of Liverpool, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tudur Smith", 
        "givenName": "Catrin", 
        "id": "sg:person.01261374732.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261374732.97"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-09-23", 
    "datePublishedReg": "2021-09-23", 
    "description": "This chapter provides a broad overview of the use of individual participant (sometimes referred to as patient) data (IPDIndividual participant data (IPD)) within meta-analyses, the associated advantages of using IPDIndividual participant data (IPD) in meta-analysis compared to aggregate dataAggregate data, and when IPDIndividual participant data (IPD) should be used in meta-analysis.This chapter also outlines the steps of conducting an IPD meta-analysisIPD meta-analysis, with practical guidance relating to requesting and obtaining IPDIndividual participant data (IPD) for meta-analysis. Challenges that can be associated with conducting an IPDIndividual participant data (IPD) meta-analysis are also discussed, including consideration of availability bias, when a subset of the relevant IPDIndividual participant data (IPD) is not available for meta-analysis.", 
    "editor": [
      {
        "familyName": "Evangelou", 
        "givenName": "Evangelos", 
        "type": "Person"
      }, 
      {
        "familyName": "Veroniki", 
        "givenName": "Areti Angeliki", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-0716-1566-9_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-0716-1565-2", 
        "978-1-0716-1566-9"
      ], 
      "name": "Meta-Research", 
      "type": "Book"
    }, 
    "keywords": [
      "participant data", 
      "Individual Participant Data Meta-Analysis", 
      "Data Meta-Analysis", 
      "individual participant data", 
      "Meta-Analysis", 
      "data", 
      "subset", 
      "practical guidance", 
      "practical considerations", 
      "broad overview", 
      "guidance", 
      "challenges", 
      "use", 
      "consideration", 
      "bias", 
      "overview", 
      "chapter", 
      "availability bias", 
      "advantages", 
      "step"
    ], 
    "name": "Practical Considerations and Challenges When Conducting an Individual Participant Data (IPD) Meta-Analysis", 
    "pagination": "263-278", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141301423"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-0716-1566-9_16"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34550596"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-0716-1566-9_16", 
      "https://app.dimensions.ai/details/publication/pub.1141301423"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_417.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-0716-1566-9_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1566-9_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1566-9_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1566-9_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-0716-1566-9_16'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      50 URIs      41 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-0716-1566-9_16 schema:about N25a3a9c9a64644a796e94023c6823bb7
2 N37eecfb4e776438186efcc20620572a0
3 N74f3ca7cf21c4a9abd9c667833488192
4 Na20f90e13eb2417eaef1b21d88232200
5 anzsrc-for:03
6 anzsrc-for:0399
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author Nbe777b3e1bdf4927ba619f628de7d717
10 schema:datePublished 2021-09-23
11 schema:datePublishedReg 2021-09-23
12 schema:description This chapter provides a broad overview of the use of individual participant (sometimes referred to as patient) data (IPDIndividual participant data (IPD)) within meta-analyses, the associated advantages of using IPDIndividual participant data (IPD) in meta-analysis compared to aggregate dataAggregate data, and when IPDIndividual participant data (IPD) should be used in meta-analysis.This chapter also outlines the steps of conducting an IPD meta-analysisIPD meta-analysis, with practical guidance relating to requesting and obtaining IPDIndividual participant data (IPD) for meta-analysis. Challenges that can be associated with conducting an IPDIndividual participant data (IPD) meta-analysis are also discussed, including consideration of availability bias, when a subset of the relevant IPDIndividual participant data (IPD) is not available for meta-analysis.
13 schema:editor Nc14e9540c33446b383aacdaea9d8711b
14 schema:genre chapter
15 schema:isAccessibleForFree false
16 schema:isPartOf N5f16ee4adc3e464dadcc0fb551425769
17 schema:keywords Data Meta-Analysis
18 Individual Participant Data Meta-Analysis
19 Meta-Analysis
20 advantages
21 availability bias
22 bias
23 broad overview
24 challenges
25 chapter
26 consideration
27 data
28 guidance
29 individual participant data
30 overview
31 participant data
32 practical considerations
33 practical guidance
34 step
35 subset
36 use
37 schema:name Practical Considerations and Challenges When Conducting an Individual Participant Data (IPD) Meta-Analysis
38 schema:pagination 263-278
39 schema:productId N517c9defd7334cdeb6b1809187c84450
40 Nce66d5d40a9c4f6eb6b282818f4d824a
41 Ne415a8d5dc274764b2c3f4ce6d7fb7ac
42 schema:publisher Ncb8e724596b44f688e80cd920f710471
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141301423
44 https://doi.org/10.1007/978-1-0716-1566-9_16
45 schema:sdDatePublished 2022-09-02T16:17
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N5a19c0cbcd4741709300fd09d584a1e5
48 schema:url https://doi.org/10.1007/978-1-0716-1566-9_16
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N25a3a9c9a64644a796e94023c6823bb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Meta-Analysis as Topic
54 rdf:type schema:DefinedTerm
55 N37eecfb4e776438186efcc20620572a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Data Analysis
57 rdf:type schema:DefinedTerm
58 N517c9defd7334cdeb6b1809187c84450 schema:name dimensions_id
59 schema:value pub.1141301423
60 rdf:type schema:PropertyValue
61 N5a19c0cbcd4741709300fd09d584a1e5 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N5f16ee4adc3e464dadcc0fb551425769 schema:isbn 978-1-0716-1565-2
64 978-1-0716-1566-9
65 schema:name Meta-Research
66 rdf:type schema:Book
67 N74f3ca7cf21c4a9abd9c667833488192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Humans
69 rdf:type schema:DefinedTerm
70 N8846aa71c9eb479189714e23eb8d88b5 rdf:first sg:person.01261374732.97
71 rdf:rest rdf:nil
72 Na20f90e13eb2417eaef1b21d88232200 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Bias
74 rdf:type schema:DefinedTerm
75 Nb9aa8b05ec0c462fb3fd3276b060407a schema:familyName Veroniki
76 schema:givenName Areti Angeliki
77 rdf:type schema:Person
78 Nbe777b3e1bdf4927ba619f628de7d717 rdf:first sg:person.014257575147.70
79 rdf:rest N8846aa71c9eb479189714e23eb8d88b5
80 Nc14e9540c33446b383aacdaea9d8711b rdf:first Nd86c319b26e24fe59af589563c6f05ca
81 rdf:rest Ne0a6f1e918c04b5489fa8974520a7505
82 Ncb8e724596b44f688e80cd920f710471 schema:name Springer Nature
83 rdf:type schema:Organisation
84 Nce66d5d40a9c4f6eb6b282818f4d824a schema:name doi
85 schema:value 10.1007/978-1-0716-1566-9_16
86 rdf:type schema:PropertyValue
87 Nd86c319b26e24fe59af589563c6f05ca schema:familyName Evangelou
88 schema:givenName Evangelos
89 rdf:type schema:Person
90 Ne0a6f1e918c04b5489fa8974520a7505 rdf:first Nb9aa8b05ec0c462fb3fd3276b060407a
91 rdf:rest rdf:nil
92 Ne415a8d5dc274764b2c3f4ce6d7fb7ac schema:name pubmed_id
93 schema:value 34550596
94 rdf:type schema:PropertyValue
95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
96 schema:name Chemical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
99 schema:name Other Chemical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biological Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biochemistry and Cell Biology
106 rdf:type schema:DefinedTerm
107 sg:person.01261374732.97 schema:affiliation grid-institutes:grid.10025.36
108 schema:familyName Tudur Smith
109 schema:givenName Catrin
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261374732.97
111 rdf:type schema:Person
112 sg:person.014257575147.70 schema:affiliation grid-institutes:grid.10025.36
113 schema:familyName Nevitt
114 schema:givenName Sarah J.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257575147.70
116 rdf:type schema:Person
117 grid-institutes:grid.10025.36 schema:alternateName Department of Health Data Science, University of Liverpool, Liverpool, UK
118 schema:name Department of Health Data Science, University of Liverpool, Liverpool, UK
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...