Face Aging Modeling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Unsang Park , Anil K. Jain

ABSTRACT

One of the challenges in automatic face recognition is to achieve temporal invariance. In other words, the goal is to come up with a representation and matching scheme that is robust to changes due to facial aging. Facial aging is a complex process that affects both the 3D shape of the face and its texture (e.g., wrinkles). These shape and texture changes degrade the performance of automatic face recognition systems. However, facial aging has not received substantial attention compared to other facial variations due to pose, lighting, and expression. We review some of the representative face aging modeling techniques, especially the 3D aging modeling technique. The 3D aging modeling technique adapts view invariant 3D face models to the given 2D face aging database. The evaluation results of the 3D aging modeling technique on three different databases (FG-NET, MORPH and BROWNS) using FaceVACS, a state-of-the-art commercial face recognition engine showed its effectiveness in handling the aging effect. More... »

PAGES

251-274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-85729-932-1_10

DOI

http://dx.doi.org/10.1007/978-0-85729-932-1_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009972136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Michigan State University, 48824, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Unsang", 
        "id": "sg:person.014647177263.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647177263.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University, 48824, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Anil K.", 
        "id": "sg:person.01031110710.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "One of the challenges in automatic face recognition is to achieve temporal invariance. In other words, the goal is to come up with a representation and matching scheme that is robust to changes due to facial aging. Facial aging is a complex process that affects both the 3D shape of the face and its texture (e.g., wrinkles). These shape and texture changes degrade the performance of automatic face recognition systems. However, facial aging has not received substantial attention compared to other facial variations due to pose, lighting, and expression. We review some of the representative face aging modeling techniques, especially the 3D aging modeling technique. The 3D aging modeling technique adapts view invariant 3D face models to the given 2D face aging database. The evaluation results of the 3D aging modeling technique on three different databases (FG-NET, MORPH and BROWNS) using FaceVACS, a state-of-the-art commercial face recognition engine showed its effectiveness in handling the aging effect.", 
    "editor": [
      {
        "familyName": "Li", 
        "givenName": "Stan Z.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Anil K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-85729-932-1_10", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-85729-931-4", 
        "978-0-85729-932-1"
      ], 
      "name": "Handbook of Face Recognition", 
      "type": "Book"
    }, 
    "keywords": [
      "automatic face recognition system", 
      "face recognition engine", 
      "automatic face recognition", 
      "face recognition system", 
      "modeling techniques", 
      "recognition engine", 
      "recognition system", 
      "face model", 
      "face recognition", 
      "evaluation results", 
      "facial variations", 
      "different databases", 
      "FaceVACS", 
      "temporal invariance", 
      "database", 
      "pose", 
      "technique", 
      "substantial attention", 
      "representative face", 
      "engine", 
      "recognition", 
      "scheme", 
      "representation", 
      "complex process", 
      "face", 
      "facial aging", 
      "performance", 
      "challenges", 
      "effectiveness", 
      "modeling", 
      "system", 
      "goal", 
      "lighting", 
      "words", 
      "texture", 
      "model", 
      "texture changes", 
      "aging", 
      "process", 
      "attention", 
      "shape", 
      "invariance", 
      "state", 
      "results", 
      "changes", 
      "effect", 
      "variation", 
      "expression"
    ], 
    "name": "Face Aging Modeling", 
    "pagination": "251-274", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009972136"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-85729-932-1_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-85729-932-1_10", 
      "https://app.dimensions.ai/details/publication/pub.1009972136"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_299.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-0-85729-932-1_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-932-1_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-932-1_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-932-1_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-932-1_10'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      22 PREDICATES      75 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-85729-932-1_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:17
4 anzsrc-for:1701
5 schema:author N2ebd41c64b8c4a23a45a42bf54823e5f
6 schema:datePublished 2011
7 schema:datePublishedReg 2011-01-01
8 schema:description One of the challenges in automatic face recognition is to achieve temporal invariance. In other words, the goal is to come up with a representation and matching scheme that is robust to changes due to facial aging. Facial aging is a complex process that affects both the 3D shape of the face and its texture (e.g., wrinkles). These shape and texture changes degrade the performance of automatic face recognition systems. However, facial aging has not received substantial attention compared to other facial variations due to pose, lighting, and expression. We review some of the representative face aging modeling techniques, especially the 3D aging modeling technique. The 3D aging modeling technique adapts view invariant 3D face models to the given 2D face aging database. The evaluation results of the 3D aging modeling technique on three different databases (FG-NET, MORPH and BROWNS) using FaceVACS, a state-of-the-art commercial face recognition engine showed its effectiveness in handling the aging effect.
9 schema:editor N689b967cb9654f9cb276c1f5679cd6a4
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf Nc277b1f9b4d140d49aab7e334a8ceec8
13 schema:keywords FaceVACS
14 aging
15 attention
16 automatic face recognition
17 automatic face recognition system
18 challenges
19 changes
20 complex process
21 database
22 different databases
23 effect
24 effectiveness
25 engine
26 evaluation results
27 expression
28 face
29 face model
30 face recognition
31 face recognition engine
32 face recognition system
33 facial aging
34 facial variations
35 goal
36 invariance
37 lighting
38 model
39 modeling
40 modeling techniques
41 performance
42 pose
43 process
44 recognition
45 recognition engine
46 recognition system
47 representation
48 representative face
49 results
50 scheme
51 shape
52 state
53 substantial attention
54 system
55 technique
56 temporal invariance
57 texture
58 texture changes
59 variation
60 words
61 schema:name Face Aging Modeling
62 schema:pagination 251-274
63 schema:productId N32090b5ec43d45a29addce8481209bfa
64 Ndeae279d61b64d45975ecec2f64df43e
65 schema:publisher Ncaa186419e7d43a891996ebe80743997
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009972136
67 https://doi.org/10.1007/978-0-85729-932-1_10
68 schema:sdDatePublished 2022-11-24T21:15
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N1257bf8c9dd24c4086360cf0c583b17b
71 schema:url https://doi.org/10.1007/978-0-85729-932-1_10
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N108519df05004eca81ec194661b7e20e schema:familyName Jain
76 schema:givenName Anil K.
77 rdf:type schema:Person
78 N1257bf8c9dd24c4086360cf0c583b17b schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N13f136c5b4984e37919f7bdc3131ef60 rdf:first N108519df05004eca81ec194661b7e20e
81 rdf:rest rdf:nil
82 N2ebd41c64b8c4a23a45a42bf54823e5f rdf:first sg:person.014647177263.64
83 rdf:rest N99f015eb84194894bdc7fb73d5c7ef2c
84 N32090b5ec43d45a29addce8481209bfa schema:name doi
85 schema:value 10.1007/978-0-85729-932-1_10
86 rdf:type schema:PropertyValue
87 N35ccaff23f494dbcaabaf67c9ce40ffa schema:familyName Li
88 schema:givenName Stan Z.
89 rdf:type schema:Person
90 N689b967cb9654f9cb276c1f5679cd6a4 rdf:first N35ccaff23f494dbcaabaf67c9ce40ffa
91 rdf:rest N13f136c5b4984e37919f7bdc3131ef60
92 N99f015eb84194894bdc7fb73d5c7ef2c rdf:first sg:person.01031110710.30
93 rdf:rest rdf:nil
94 Nc277b1f9b4d140d49aab7e334a8ceec8 schema:isbn 978-0-85729-931-4
95 978-0-85729-932-1
96 schema:name Handbook of Face Recognition
97 rdf:type schema:Book
98 Ncaa186419e7d43a891996ebe80743997 schema:name Springer Nature
99 rdf:type schema:Organisation
100 Ndeae279d61b64d45975ecec2f64df43e schema:name dimensions_id
101 schema:value pub.1009972136
102 rdf:type schema:PropertyValue
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
110 schema:name Psychology and Cognitive Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
113 schema:name Psychology
114 rdf:type schema:DefinedTerm
115 sg:person.01031110710.30 schema:affiliation grid-institutes:grid.17088.36
116 schema:familyName Jain
117 schema:givenName Anil K.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
119 rdf:type schema:Person
120 sg:person.014647177263.64 schema:affiliation grid-institutes:grid.17088.36
121 schema:familyName Park
122 schema:givenName Unsang
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647177263.64
124 rdf:type schema:Person
125 grid-institutes:grid.17088.36 schema:alternateName Michigan State University, 48824, East Lansing, MI, USA
126 schema:name Michigan State University, 48824, East Lansing, MI, USA
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...