Canonical Bases in Affine Type A and Ariki’s Theorem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Meinolf Geck , Nicolas Jacon

ABSTRACT

To complete the main results of the previous chapter, we need to define a new object: the quantum affine algebra \(\mathcal{U}_{q}(\widehat{\mathfrak{sl}}_{e})\). We give a brief introduction to the theory of canonical bases and crystals for these algebras following the works of Lusztig and Kashiwara. We then state Ariki’s theorem which gives the connection between this theory and the representation theory of Ariki-Koike algebras. As a consequence, we will be able to complete the proof of the main results of the previous chapter. We then go further and survey Uglov’s theory concerning canonical bases of Fock spaces. This will allow us to give an explicit description of the canoncial basic sets for Ariki-Koike algebras in all cases in characteristic 0. We also present an algorithm for computing the decomposition matrices of these algebras. More... »

PAGES

309-361

Book

TITLE

Representations of Hecke Algebras at Roots of Unity

ISBN

978-0-85729-715-0
978-0-85729-716-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-85729-716-7_6

DOI

http://dx.doi.org/10.1007/978-0-85729-716-7_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052274426


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Aberdeen", 
          "id": "https://www.grid.ac/institutes/grid.7107.1", 
          "name": [
            "Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geck", 
        "givenName": "Meinolf", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Franche-Comt\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.7459.f", 
          "name": [
            "UFR Sciences et Techniques, Universit\u00e9 de Franche-Comt\u00e9, Route de Gray 16, Besancon, 25030, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacon", 
        "givenName": "Nicolas", 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "To complete the main results of the previous chapter, we need to define a new object: the quantum affine algebra \\(\\mathcal{U}_{q}(\\widehat{\\mathfrak{sl}}_{e})\\). We give a brief introduction to the theory of canonical bases and crystals for these algebras following the works of Lusztig and Kashiwara. We then state Ariki\u2019s theorem which gives the connection between this theory and the representation theory of Ariki-Koike algebras. As a consequence, we will be able to complete the proof of the main results of the previous chapter. We then go further and survey Uglov\u2019s theory concerning canonical bases of Fock spaces. This will allow us to give an explicit description of the canoncial basic sets for Ariki-Koike algebras in all cases in characteristic 0. We also present an algorithm for computing the decomposition matrices of these algebras.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-85729-716-7_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-85729-715-0", 
        "978-0-85729-716-7"
      ], 
      "name": "Representations of Hecke Algebras at Roots of Unity", 
      "type": "Book"
    }, 
    "name": "Canonical Bases in Affine Type A and Ariki\u2019s Theorem", 
    "pagination": "309-361", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-85729-716-7_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f900209b7f98843fcb667f0cb92d3d8f9fc380d17dc3eb2d61f06e4bc586dcb6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052274426"
        ]
      }
    ], 
    "publisher": {
      "location": "London", 
      "name": "Springer London", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-85729-716-7_6", 
      "https://app.dimensions.ai/details/publication/pub.1052274426"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000090.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-0-85729-716-7_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-716-7_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-716-7_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-716-7_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-85729-716-7_6'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-85729-716-7_6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3b54a0c2b5ee48b9835c43fd57ca5e52
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description To complete the main results of the previous chapter, we need to define a new object: the quantum affine algebra \(\mathcal{U}_{q}(\widehat{\mathfrak{sl}}_{e})\). We give a brief introduction to the theory of canonical bases and crystals for these algebras following the works of Lusztig and Kashiwara. We then state Ariki’s theorem which gives the connection between this theory and the representation theory of Ariki-Koike algebras. As a consequence, we will be able to complete the proof of the main results of the previous chapter. We then go further and survey Uglov’s theory concerning canonical bases of Fock spaces. This will allow us to give an explicit description of the canoncial basic sets for Ariki-Koike algebras in all cases in characteristic 0. We also present an algorithm for computing the decomposition matrices of these algebras.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N3bac84db45d74cb5a0246aea2b743168
11 schema:name Canonical Bases in Affine Type A and Ariki’s Theorem
12 schema:pagination 309-361
13 schema:productId N0f0e645cc9054c16a85268f03d9d9166
14 N646d17823af548eabfef87b934cda41d
15 Ncffeccace0354a4890e5fad6a11cd213
16 schema:publisher Nfbcb5052c43f4e35833801a73d84eb08
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052274426
18 https://doi.org/10.1007/978-0-85729-716-7_6
19 schema:sdDatePublished 2019-04-15T14:14
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N3f0e98d71b5d455d86b9b520676adee6
22 schema:url http://link.springer.com/10.1007/978-0-85729-716-7_6
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N0f0e645cc9054c16a85268f03d9d9166 schema:name dimensions_id
27 schema:value pub.1052274426
28 rdf:type schema:PropertyValue
29 N3b54a0c2b5ee48b9835c43fd57ca5e52 rdf:first N72ab12ae5df643ba9144d6a3425c1e2c
30 rdf:rest Ne600801d5c724f6e915377a3d0933a0d
31 N3bac84db45d74cb5a0246aea2b743168 schema:isbn 978-0-85729-715-0
32 978-0-85729-716-7
33 schema:name Representations of Hecke Algebras at Roots of Unity
34 rdf:type schema:Book
35 N3f0e98d71b5d455d86b9b520676adee6 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N646d17823af548eabfef87b934cda41d schema:name doi
38 schema:value 10.1007/978-0-85729-716-7_6
39 rdf:type schema:PropertyValue
40 N72ab12ae5df643ba9144d6a3425c1e2c schema:affiliation https://www.grid.ac/institutes/grid.7107.1
41 schema:familyName Geck
42 schema:givenName Meinolf
43 rdf:type schema:Person
44 N741ff4019f1a45ee919899b8b87a2650 schema:affiliation https://www.grid.ac/institutes/grid.7459.f
45 schema:familyName Jacon
46 schema:givenName Nicolas
47 rdf:type schema:Person
48 Ncffeccace0354a4890e5fad6a11cd213 schema:name readcube_id
49 schema:value f900209b7f98843fcb667f0cb92d3d8f9fc380d17dc3eb2d61f06e4bc586dcb6
50 rdf:type schema:PropertyValue
51 Ne600801d5c724f6e915377a3d0933a0d rdf:first N741ff4019f1a45ee919899b8b87a2650
52 rdf:rest rdf:nil
53 Nfbcb5052c43f4e35833801a73d84eb08 schema:location London
54 schema:name Springer London
55 rdf:type schema:Organisation
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 https://www.grid.ac/institutes/grid.7107.1 schema:alternateName University of Aberdeen
63 schema:name Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, UK
64 rdf:type schema:Organization
65 https://www.grid.ac/institutes/grid.7459.f schema:alternateName University of Franche-Comté
66 schema:name UFR Sciences et Techniques, Université de Franche-Comté, Route de Gray 16, Besancon, 25030, France
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...