Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Torsten Ekedahl , Gerard van der Geer

ABSTRACT

We introduce a stratification on the space of symplectic flags on the de Rham bundle of the universal principally polarized abelian variety in positive characteristic. We study its geometric properties, such as irreducibility of the strata, and we calculate the cycle classes. When the characteristic p is treated as a formal variable these classes can be seen as a deformation of the classes of the Schubert varieties for the corresponding classical flag variety (the classical case is recovered by putting p equal to 0). We relate our stratification with the E-O stratification on the moduli space of principally polarized abelian varieties of a fixed dimension and derive properties of the latter. Our results are strongly linked with the combinatorics of the Weyl group of the symplectic group. More... »

PAGES

567-636

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13

DOI

http://dx.doi.org/10.1007/978-0-8176-4745-2_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049310473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ekedahl", 
        "givenName": "Torsten", 
        "id": "sg:person.015673246600.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673246600.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Geer", 
        "givenName": "Gerard", 
        "id": "sg:person.011551332252.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "We introduce a stratification on the space of symplectic flags on the de Rham bundle of the universal principally polarized abelian variety in positive characteristic. We study its geometric properties, such as irreducibility of the strata, and we calculate the cycle classes. When the characteristic p is treated as a formal variable these classes can be seen as a deformation of the classes of the Schubert varieties for the corresponding classical flag variety (the classical case is recovered by putting p equal to 0). We relate our stratification with the E-O stratification on the moduli space of principally polarized abelian varieties of a fixed dimension and derive properties of the latter. Our results are strongly linked with the combinatorics of the Weyl group of the symplectic group.", 
    "editor": [
      {
        "familyName": "Tschinkel", 
        "givenName": "Yuri", 
        "type": "Person"
      }, 
      {
        "familyName": "Zarhin", 
        "givenName": "Yuri", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-8176-4745-2_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-8176-4744-5", 
        "978-0-8176-4745-2"
      ], 
      "name": "Algebra, Arithmetic, and Geometry", 
      "type": "Book"
    }, 
    "keywords": [
      "stratification", 
      "group", 
      "variety", 
      "bundles", 
      "variables", 
      "results", 
      "flags", 
      "characteristics", 
      "class", 
      "strata", 
      "properties", 
      "space", 
      "positive characteristic", 
      "dimensions", 
      "formal variables", 
      "Schubert varieties", 
      "flag varieties", 
      "irreducibility", 
      "Weyl group", 
      "abelian varieties", 
      "geometric properties", 
      "derive properties", 
      "deformation", 
      "modulus", 
      "cycle classes", 
      "symplectic group", 
      "combinatorics", 
      "moduli space", 
      "symplectic flags", 
      "Rham bundle", 
      "corresponding classical flag variety", 
      "classical flag variety"
    ], 
    "name": "Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties", 
    "pagination": "567-636", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049310473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-8176-4745-2_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-8176-4745-2_13", 
      "https://app.dimensions.ai/details/publication/pub.1049310473"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_321.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-0-8176-4745-2_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-8176-4745-2_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne77ec444a56d41aca524c586817daded
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description We introduce a stratification on the space of symplectic flags on the de Rham bundle of the universal principally polarized abelian variety in positive characteristic. We study its geometric properties, such as irreducibility of the strata, and we calculate the cycle classes. When the characteristic p is treated as a formal variable these classes can be seen as a deformation of the classes of the Schubert varieties for the corresponding classical flag variety (the classical case is recovered by putting p equal to 0). We relate our stratification with the E-O stratification on the moduli space of principally polarized abelian varieties of a fixed dimension and derive properties of the latter. Our results are strongly linked with the combinatorics of the Weyl group of the symplectic group.
7 schema:editor N1af7152865db470f908d3960d456c1f2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N1eec5f8f734a471ca3a6fe2d3b748010
12 schema:keywords Rham bundle
13 Schubert varieties
14 Weyl group
15 abelian varieties
16 bundles
17 characteristics
18 class
19 classical flag variety
20 combinatorics
21 corresponding classical flag variety
22 cycle classes
23 deformation
24 derive properties
25 dimensions
26 flag varieties
27 flags
28 formal variables
29 geometric properties
30 group
31 irreducibility
32 moduli space
33 modulus
34 positive characteristic
35 properties
36 results
37 space
38 strata
39 stratification
40 symplectic flags
41 symplectic group
42 variables
43 variety
44 schema:name Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties
45 schema:pagination 567-636
46 schema:productId N1dae955cdc2d449696ce8caadb8f63cb
47 Nccd4816f9b4f4bcba38c6e239fb0c2b0
48 schema:publisher Nd4f05d947bdf405f913007580297c502
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049310473
50 https://doi.org/10.1007/978-0-8176-4745-2_13
51 schema:sdDatePublished 2022-01-01T19:18
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N0770be3f0cfe48fb9d780469b453bde7
54 schema:url https://doi.org/10.1007/978-0-8176-4745-2_13
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N0770be3f0cfe48fb9d780469b453bde7 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N16d09ba07128417995e637dad7266df6 schema:familyName Tschinkel
61 schema:givenName Yuri
62 rdf:type schema:Person
63 N1af7152865db470f908d3960d456c1f2 rdf:first N16d09ba07128417995e637dad7266df6
64 rdf:rest Nd1c7534d9c4c440b8fab6dc487979e09
65 N1dae955cdc2d449696ce8caadb8f63cb schema:name doi
66 schema:value 10.1007/978-0-8176-4745-2_13
67 rdf:type schema:PropertyValue
68 N1eec5f8f734a471ca3a6fe2d3b748010 schema:isbn 978-0-8176-4744-5
69 978-0-8176-4745-2
70 schema:name Algebra, Arithmetic, and Geometry
71 rdf:type schema:Book
72 N5a67d50bdb374114b889cbf45f0b7d4e rdf:first sg:person.011551332252.27
73 rdf:rest rdf:nil
74 Nabe79fb917b34714a33822044ad66ee2 schema:familyName Zarhin
75 schema:givenName Yuri
76 rdf:type schema:Person
77 Nccd4816f9b4f4bcba38c6e239fb0c2b0 schema:name dimensions_id
78 schema:value pub.1049310473
79 rdf:type schema:PropertyValue
80 Nd1c7534d9c4c440b8fab6dc487979e09 rdf:first Nabe79fb917b34714a33822044ad66ee2
81 rdf:rest rdf:nil
82 Nd4f05d947bdf405f913007580297c502 schema:name Springer Nature
83 rdf:type schema:Organisation
84 Ne77ec444a56d41aca524c586817daded rdf:first sg:person.015673246600.14
85 rdf:rest N5a67d50bdb374114b889cbf45f0b7d4e
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
93 schema:familyName van der Geer
94 schema:givenName Gerard
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
96 rdf:type schema:Person
97 sg:person.015673246600.14 schema:affiliation grid-institutes:grid.10548.38
98 schema:familyName Ekedahl
99 schema:givenName Torsten
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673246600.14
101 rdf:type schema:Person
102 grid-institutes:grid.10548.38 schema:alternateName Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden
103 schema:name Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden
104 rdf:type schema:Organization
105 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
106 schema:name Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...