Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Torsten Ekedahl , Gerard van der Geer

ABSTRACT

We introduce a stratification on the space of symplectic flags on the de Rham bundle of the universal principally polarized abelian variety in positive characteristic. We study its geometric properties, such as irreducibility of the strata, and we calculate the cycle classes. When the characteristic p is treated as a formal variable these classes can be seen as a deformation of the classes of the Schubert varieties for the corresponding classical flag variety (the classical case is recovered by putting p equal to 0). We relate our stratification with the E-O stratification on the moduli space of principally polarized abelian varieties of a fixed dimension and derive properties of the latter. Our results are strongly linked with the combinatorics of the Weyl group of the symplectic group. More... »

PAGES

567-636

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13

DOI

http://dx.doi.org/10.1007/978-0-8176-4745-2_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049310473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ekedahl", 
        "givenName": "Torsten", 
        "id": "sg:person.015673246600.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673246600.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Geer", 
        "givenName": "Gerard", 
        "id": "sg:person.011551332252.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "We introduce a stratification on the space of symplectic flags on the de Rham bundle of the universal principally polarized abelian variety in positive characteristic. We study its geometric properties, such as irreducibility of the strata, and we calculate the cycle classes. When the characteristic p is treated as a formal variable these classes can be seen as a deformation of the classes of the Schubert varieties for the corresponding classical flag variety (the classical case is recovered by putting p equal to 0). We relate our stratification with the E-O stratification on the moduli space of principally polarized abelian varieties of a fixed dimension and derive properties of the latter. Our results are strongly linked with the combinatorics of the Weyl group of the symplectic group.", 
    "editor": [
      {
        "familyName": "Tschinkel", 
        "givenName": "Yuri", 
        "type": "Person"
      }, 
      {
        "familyName": "Zarhin", 
        "givenName": "Yuri", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-8176-4745-2_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-8176-4744-5", 
        "978-0-8176-4745-2"
      ], 
      "name": "Algebra, Arithmetic, and Geometry", 
      "type": "Book"
    }, 
    "keywords": [
      "stratification", 
      "group", 
      "variety", 
      "bundles", 
      "variables", 
      "results", 
      "flags", 
      "characteristics", 
      "class", 
      "strata", 
      "properties", 
      "space", 
      "positive characteristic", 
      "dimensions", 
      "formal variables", 
      "Schubert varieties", 
      "flag varieties", 
      "irreducibility", 
      "Weyl group", 
      "abelian varieties", 
      "geometric properties", 
      "derive properties", 
      "deformation", 
      "modulus", 
      "cycle classes", 
      "symplectic group", 
      "combinatorics", 
      "moduli space", 
      "symplectic flags", 
      "Rham bundle", 
      "corresponding classical flag variety", 
      "classical flag variety"
    ], 
    "name": "Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties", 
    "pagination": "567-636", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049310473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-8176-4745-2_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-8176-4745-2_13", 
      "https://app.dimensions.ai/details/publication/pub.1049310473"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_308.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-0-8176-4745-2_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-8176-4745-2_13'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-8176-4745-2_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N00bd43b60c274d67b9a605633e046947
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description We introduce a stratification on the space of symplectic flags on the de Rham bundle of the universal principally polarized abelian variety in positive characteristic. We study its geometric properties, such as irreducibility of the strata, and we calculate the cycle classes. When the characteristic p is treated as a formal variable these classes can be seen as a deformation of the classes of the Schubert varieties for the corresponding classical flag variety (the classical case is recovered by putting p equal to 0). We relate our stratification with the E-O stratification on the moduli space of principally polarized abelian varieties of a fixed dimension and derive properties of the latter. Our results are strongly linked with the combinatorics of the Weyl group of the symplectic group.
7 schema:editor N5d08bf72d8774352b1f5dfa35bf4adf9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9c7f770af9eb4ddf9e0398e51aac864b
12 schema:keywords Rham bundle
13 Schubert varieties
14 Weyl group
15 abelian varieties
16 bundles
17 characteristics
18 class
19 classical flag variety
20 combinatorics
21 corresponding classical flag variety
22 cycle classes
23 deformation
24 derive properties
25 dimensions
26 flag varieties
27 flags
28 formal variables
29 geometric properties
30 group
31 irreducibility
32 moduli space
33 modulus
34 positive characteristic
35 properties
36 results
37 space
38 strata
39 stratification
40 symplectic flags
41 symplectic group
42 variables
43 variety
44 schema:name Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties
45 schema:pagination 567-636
46 schema:productId N145ecb481a774e10a4e46b0d2e66c865
47 Ne5a8c105d0d24aca864fed5da6d11a64
48 schema:publisher Nc93af68410d34457808cb7d20013b8be
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049310473
50 https://doi.org/10.1007/978-0-8176-4745-2_13
51 schema:sdDatePublished 2021-12-01T20:04
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N1a83c9dc4120458384ccf913946c8247
54 schema:url https://doi.org/10.1007/978-0-8176-4745-2_13
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N00bd43b60c274d67b9a605633e046947 rdf:first sg:person.015673246600.14
59 rdf:rest N5ac4eacd1b8a4ab2bfccbaab0f10a9cc
60 N01884734738f48168232798bd0cb3ebb rdf:first Ne2309307fc57405ba8a7b57579d0b342
61 rdf:rest rdf:nil
62 N145ecb481a774e10a4e46b0d2e66c865 schema:name dimensions_id
63 schema:value pub.1049310473
64 rdf:type schema:PropertyValue
65 N1a83c9dc4120458384ccf913946c8247 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N5ac4eacd1b8a4ab2bfccbaab0f10a9cc rdf:first sg:person.011551332252.27
68 rdf:rest rdf:nil
69 N5d08bf72d8774352b1f5dfa35bf4adf9 rdf:first Nb9873cb3db7e4740838cd6d57aef3022
70 rdf:rest N01884734738f48168232798bd0cb3ebb
71 N9c7f770af9eb4ddf9e0398e51aac864b schema:isbn 978-0-8176-4744-5
72 978-0-8176-4745-2
73 schema:name Algebra, Arithmetic, and Geometry
74 rdf:type schema:Book
75 Nb9873cb3db7e4740838cd6d57aef3022 schema:familyName Tschinkel
76 schema:givenName Yuri
77 rdf:type schema:Person
78 Nc93af68410d34457808cb7d20013b8be schema:name Springer Nature
79 rdf:type schema:Organisation
80 Ne2309307fc57405ba8a7b57579d0b342 schema:familyName Zarhin
81 schema:givenName Yuri
82 rdf:type schema:Person
83 Ne5a8c105d0d24aca864fed5da6d11a64 schema:name doi
84 schema:value 10.1007/978-0-8176-4745-2_13
85 rdf:type schema:PropertyValue
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
93 schema:familyName van der Geer
94 schema:givenName Gerard
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
96 rdf:type schema:Person
97 sg:person.015673246600.14 schema:affiliation grid-institutes:grid.10548.38
98 schema:familyName Ekedahl
99 schema:givenName Torsten
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673246600.14
101 rdf:type schema:Person
102 grid-institutes:grid.10548.38 schema:alternateName Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden
103 schema:name Matematiska institutionen, Stockholms universitet, SE-106 91, Stockholm, Sweden
104 rdf:type schema:Organization
105 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
106 schema:name Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...