Instationary Heat-Constrained Trajectory Optimization of a Hypersonic Space Vehicle by ODE–PDE-Constrained Optimal Control View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-06-15

AUTHORS

Kurt Chudej , Hans Josef Pesch , Markus Wächter , Gottfried Sachs , Florent Le Bras

ABSTRACT

During ascent and reentry of a hypersonic space vehicle into the atmosphere of any heavenly body, the space vehicle is subjected, among others, to extreme aerothermic loads. Therefore, an efficient, sophisticated and lightweight thermal protection system is determinative for the success of the entire mission. For a deeper understanding of the conductive, convective and radiative heating effects through a thermal protection system, a mathematical model is investigated which is given by an optimal control problem subject to not only the usual dynamic equations of motion and suitable control and state variable inequality constraints but also an instationary quasi-linear heat equation with nonlinear boundary conditions. By this model, the temperature of the heat shield can be limited in certain critical regions. The resulting ODE–PDE-constrained optimal control problem is solved by a second-order semi-discretization in space of the quasi-linear parabolic partial differential equation yielding a large-scale nonlinear ODE-constrained optimal control problem with additional state constraints for the heat load. Numerical results obtained by a direct collocation method are presented, which also include those for active cooling of the engine by the liquid hydrogen fuel. The aerothermic load and the fuel loss due to engine cooling can be considerably reduced by optimization. More... »

PAGES

127-144

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-95857-6_8

DOI

http://dx.doi.org/10.1007/978-0-387-95857-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044340779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chudej", 
        "givenName": "Kurt", 
        "id": "sg:person.07503175407.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503175407.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "Hans Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Institute of Science and Technology, Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "German Institute of Science and Technology, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "W\u00e4chter", 
        "givenName": "Markus", 
        "id": "sg:person.011316210232.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316210232.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Flugmechanik und Flugregelung, Technische Universit\u00e4t M\u00fcnchen, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr Flugmechanik und Flugregelung, Technische Universit\u00e4t M\u00fcnchen, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachs", 
        "givenName": "Gottfried", 
        "id": "sg:person.01256362447.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256362447.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Recherches Balistiques et A\u00e9rodynamiques, D\u00e9l\u00e9gation G\u00e9n\u00e9rale pour l\u2019Armement, formerly: \u00c9cole Polytechnique Paris, Vernon, France", 
          "id": "http://www.grid.ac/institutes/grid.10877.39", 
          "name": [
            "Laboratoire de Recherches Balistiques et A\u00e9rodynamiques, D\u00e9l\u00e9gation G\u00e9n\u00e9rale pour l\u2019Armement, formerly: \u00c9cole Polytechnique Paris, Vernon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Bras", 
        "givenName": "Florent", 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-06-15", 
    "datePublishedReg": "2009-06-15", 
    "description": "During ascent and reentry of a hypersonic space vehicle into the atmosphere of any heavenly body, the space vehicle is subjected, among others, to extreme aerothermic loads. Therefore, an efficient, sophisticated and lightweight thermal protection system is determinative for the success of the entire mission. For a deeper understanding of the conductive, convective and radiative heating effects through a thermal protection system, a mathematical model is investigated which is given by an optimal control problem subject to not only the usual dynamic equations of motion and suitable control and state variable inequality constraints but also an instationary quasi-linear heat equation with nonlinear boundary conditions. By this model, the temperature of the heat shield can be limited in certain critical regions. The resulting ODE\u2013PDE-constrained optimal control problem is solved by a second-order semi-discretization in space of the quasi-linear parabolic partial differential equation yielding a large-scale nonlinear ODE-constrained optimal control problem with additional state constraints for the heat load. Numerical results obtained by a direct collocation method are presented, which also include those for active cooling of the engine by the liquid hydrogen fuel. The aerothermic load and the fuel loss due to engine cooling can be considerably reduced by optimization.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-95857-6_8", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-95856-9", 
        "978-0-387-95857-6"
      ], 
      "name": "Variational Analysis and Aerospace Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "optimal control problem", 
      "control problem", 
      "thermal protection system", 
      "ODE\u2013PDE", 
      "quasi-linear parabolic partial differential equations", 
      "hypersonic space vehicles", 
      "parabolic partial differential equations", 
      "quasi-linear heat equation", 
      "state variable inequality constraints", 
      "partial differential equations", 
      "additional state constraints", 
      "direct collocation method", 
      "space vehicles", 
      "nonlinear boundary conditions", 
      "certain critical regions", 
      "lightweight thermal protection system", 
      "differential equations", 
      "state constraints", 
      "optimal control", 
      "collocation method", 
      "liquid hydrogen fuel", 
      "inequality constraints", 
      "heat equation", 
      "mathematical model", 
      "trajectory optimization", 
      "dynamic equations", 
      "protection system", 
      "engine cooling", 
      "boundary conditions", 
      "equations", 
      "numerical results", 
      "hydrogen fuel", 
      "heat shield", 
      "fuel loss", 
      "heat load", 
      "active cooling", 
      "heating effect", 
      "entire mission", 
      "load", 
      "optimization", 
      "vehicles", 
      "critical region", 
      "problem", 
      "ODEs", 
      "constraints", 
      "cooling", 
      "radiative heating effect", 
      "heavenly bodies", 
      "suitable control", 
      "fuel", 
      "model", 
      "motion", 
      "space", 
      "heat", 
      "engine", 
      "system", 
      "temperature", 
      "atmosphere", 
      "shield", 
      "deeper understanding", 
      "mission", 
      "control", 
      "conditions", 
      "method", 
      "results", 
      "effect", 
      "loss", 
      "ascent", 
      "region", 
      "body", 
      "reentry", 
      "understanding", 
      "success"
    ], 
    "name": "Instationary Heat-Constrained Trajectory Optimization of a Hypersonic Space Vehicle by ODE\u2013PDE-Constrained Optimal Control", 
    "pagination": "127-144", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044340779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-95857-6_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-95857-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1044340779"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_240.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-0-387-95857-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-95857-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-95857-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-95857-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-95857-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      99 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-95857-6_8 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:09
5 anzsrc-for:0915
6 schema:author Na7261fd3b96d42f797e0dd9aa5643684
7 schema:datePublished 2009-06-15
8 schema:datePublishedReg 2009-06-15
9 schema:description During ascent and reentry of a hypersonic space vehicle into the atmosphere of any heavenly body, the space vehicle is subjected, among others, to extreme aerothermic loads. Therefore, an efficient, sophisticated and lightweight thermal protection system is determinative for the success of the entire mission. For a deeper understanding of the conductive, convective and radiative heating effects through a thermal protection system, a mathematical model is investigated which is given by an optimal control problem subject to not only the usual dynamic equations of motion and suitable control and state variable inequality constraints but also an instationary quasi-linear heat equation with nonlinear boundary conditions. By this model, the temperature of the heat shield can be limited in certain critical regions. The resulting ODE–PDE-constrained optimal control problem is solved by a second-order semi-discretization in space of the quasi-linear parabolic partial differential equation yielding a large-scale nonlinear ODE-constrained optimal control problem with additional state constraints for the heat load. Numerical results obtained by a direct collocation method are presented, which also include those for active cooling of the engine by the liquid hydrogen fuel. The aerothermic load and the fuel loss due to engine cooling can be considerably reduced by optimization.
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf Nca89f57df0dd4ecbbd6118b4f6377dc3
13 schema:keywords ODEs
14 ODE–PDE
15 active cooling
16 additional state constraints
17 ascent
18 atmosphere
19 body
20 boundary conditions
21 certain critical regions
22 collocation method
23 conditions
24 constraints
25 control
26 control problem
27 cooling
28 critical region
29 deeper understanding
30 differential equations
31 direct collocation method
32 dynamic equations
33 effect
34 engine
35 engine cooling
36 entire mission
37 equations
38 fuel
39 fuel loss
40 heat
41 heat equation
42 heat load
43 heat shield
44 heating effect
45 heavenly bodies
46 hydrogen fuel
47 hypersonic space vehicles
48 inequality constraints
49 lightweight thermal protection system
50 liquid hydrogen fuel
51 load
52 loss
53 mathematical model
54 method
55 mission
56 model
57 motion
58 nonlinear boundary conditions
59 numerical results
60 optimal control
61 optimal control problem
62 optimization
63 parabolic partial differential equations
64 partial differential equations
65 problem
66 protection system
67 quasi-linear heat equation
68 quasi-linear parabolic partial differential equations
69 radiative heating effect
70 reentry
71 region
72 results
73 shield
74 space
75 space vehicles
76 state constraints
77 state variable inequality constraints
78 success
79 suitable control
80 system
81 temperature
82 thermal protection system
83 trajectory optimization
84 understanding
85 vehicles
86 schema:name Instationary Heat-Constrained Trajectory Optimization of a Hypersonic Space Vehicle by ODE–PDE-Constrained Optimal Control
87 schema:pagination 127-144
88 schema:productId N2f61197e23b646c99b343fbba57dd143
89 N4f2f71186a714d4cb53b4f41e77e9113
90 schema:publisher Ne3cef444d2ad416e87da7827dc614166
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044340779
92 https://doi.org/10.1007/978-0-387-95857-6_8
93 schema:sdDatePublished 2022-09-02T16:12
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N5fa95f1f046c464a91a501208990932c
96 schema:url https://doi.org/10.1007/978-0-387-95857-6_8
97 sgo:license sg:explorer/license/
98 sgo:sdDataset chapters
99 rdf:type schema:Chapter
100 N2ed16995498048aeaef7ece14316ac44 schema:affiliation grid-institutes:grid.10877.39
101 schema:familyName Le Bras
102 schema:givenName Florent
103 rdf:type schema:Person
104 N2f61197e23b646c99b343fbba57dd143 schema:name dimensions_id
105 schema:value pub.1044340779
106 rdf:type schema:PropertyValue
107 N3e2e9ff6beb04b849d63233b71a16826 rdf:first sg:person.01256362447.53
108 rdf:rest N6b9bbe2249b745aaadc465d2830453d1
109 N4f2f71186a714d4cb53b4f41e77e9113 schema:name doi
110 schema:value 10.1007/978-0-387-95857-6_8
111 rdf:type schema:PropertyValue
112 N5fa95f1f046c464a91a501208990932c schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N6b9bbe2249b745aaadc465d2830453d1 rdf:first N2ed16995498048aeaef7ece14316ac44
115 rdf:rest rdf:nil
116 Na7261fd3b96d42f797e0dd9aa5643684 rdf:first sg:person.07503175407.80
117 rdf:rest Ncc730d03200f4b58a9f398046830c12f
118 Nb5871b0762ef40dd855ef4af2f470038 rdf:first sg:person.011316210232.41
119 rdf:rest N3e2e9ff6beb04b849d63233b71a16826
120 Nca89f57df0dd4ecbbd6118b4f6377dc3 schema:isbn 978-0-387-95856-9
121 978-0-387-95857-6
122 schema:name Variational Analysis and Aerospace Engineering
123 rdf:type schema:Book
124 Ncc730d03200f4b58a9f398046830c12f rdf:first sg:person.014543723551.22
125 rdf:rest Nb5871b0762ef40dd855ef4af2f470038
126 Ne3cef444d2ad416e87da7827dc614166 schema:name Springer Nature
127 rdf:type schema:Organisation
128 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
129 schema:name Mathematical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
132 schema:name Applied Mathematics
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
135 schema:name Numerical and Computational Mathematics
136 rdf:type schema:DefinedTerm
137 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
138 schema:name Engineering
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
141 schema:name Interdisciplinary Engineering
142 rdf:type schema:DefinedTerm
143 sg:person.011316210232.41 schema:affiliation grid-institutes:None
144 schema:familyName Wächter
145 schema:givenName Markus
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316210232.41
147 rdf:type schema:Person
148 sg:person.01256362447.53 schema:affiliation grid-institutes:grid.6936.a
149 schema:familyName Sachs
150 schema:givenName Gottfried
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256362447.53
152 rdf:type schema:Person
153 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.7384.8
154 schema:familyName Pesch
155 schema:givenName Hans Josef
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
157 rdf:type schema:Person
158 sg:person.07503175407.80 schema:affiliation grid-institutes:grid.7384.8
159 schema:familyName Chudej
160 schema:givenName Kurt
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503175407.80
162 rdf:type schema:Person
163 grid-institutes:None schema:alternateName German Institute of Science and Technology, Singapore, Singapore
164 schema:name German Institute of Science and Technology, Singapore, Singapore
165 rdf:type schema:Organization
166 grid-institutes:grid.10877.39 schema:alternateName Laboratoire de Recherches Balistiques et Aérodynamiques, Délégation Générale pour l’Armement, formerly: École Polytechnique Paris, Vernon, France
167 schema:name Laboratoire de Recherches Balistiques et Aérodynamiques, Délégation Générale pour l’Armement, formerly: École Polytechnique Paris, Vernon, France
168 rdf:type schema:Organization
169 grid-institutes:grid.6936.a schema:alternateName Lehrstuhl für Flugmechanik und Flugregelung, Technische Universität München, München, Germany
170 schema:name Lehrstuhl für Flugmechanik und Flugregelung, Technische Universität München, München, Germany
171 rdf:type schema:Organization
172 grid-institutes:grid.7384.8 schema:alternateName Lehrstuhl für Ingenieurmathematik, Universität Bayreuth, Bayreuth, Germany
173 schema:name Lehrstuhl für Ingenieurmathematik, Universität Bayreuth, Bayreuth, Germany
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...