Improving the Stress Tolerance of Probiotic Cultures: Recent Trends and Future Directions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-06-24

AUTHORS

Aditya Upadrasta , Catherine Stanton , Colin Hill , Gerald F. Fitzgerald , R. Paul Ross

ABSTRACT

The human intestinal microbiota is considered an “organ” of the gastrointestinal tract (GIT) that plays a role in the host’s digestive process, epithelial cell development, and regulation of innate immunity, thereby contributing to host health. One way of modulating the gut microbiota is by the consumption of probiotics, in particular, products containing Lactobacillus and Bifidobacterium spp. In this context, these micro-organisms have been extensively studied with respect to health promotion in humans and animals. In recent years, functional foods containing probiotics have become popular within the food industry due to the heightened awareness of consumers toward these health-promoting foods. Probiotic bacteria must survive during food processing and production, and retain viability after reaching the GIT, to deliver their therapeutic effect to the host. In this chapter, we discuss the classical approaches used for strain improvement, such as strain selection, nutritional programming, processing conditions, and the selection of matrices for the delivery of probiotic bacteria to the GIT. We also detail potential future strategies for improvement of probiotic survival, in particular, the application of whole-genome sequencing and metagenomics to generate molecular maps and gene catalogs of health-promoting bacteria. These will be useful for the identification of potential genes in bacterial genomes that play important roles in stress responses. Combinations of classical and molecular approaches have the potential to enhance the survival of probiotics and to help win their battle against stress. More... »

PAGES

395-438

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-92771-8_17

DOI

http://dx.doi.org/10.1007/978-0-387-92771-8_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051054574


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0908", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Food Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Microbiology, University College Cork, Cork, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7872.a", 
          "name": [
            "Teagasc, Moorepark Food Research Centre, Fermoy, Co Cork, Ireland", 
            "Department of Microbiology, University College Cork, Cork, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Upadrasta", 
        "givenName": "Aditya", 
        "id": "sg:person.0641300675.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641300675.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alimentary Pharmabiotic Centre, Cork, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7872.a", 
          "name": [
            "Teagasc, Moorepark Food Research Centre, Fermoy, Co Cork, Ireland", 
            "Alimentary Pharmabiotic Centre, Cork, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanton", 
        "givenName": "Catherine", 
        "id": "sg:person.0631363014.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631363014.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alimentary Pharmabiotic Centre, Cork, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7872.a", 
          "name": [
            "Department of Microbiology, University College Cork, Cork, Ireland", 
            "Alimentary Pharmabiotic Centre, Cork, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hill", 
        "givenName": "Colin", 
        "id": "sg:person.01202224511.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202224511.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alimentary Pharmabiotic Centre, Cork, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7872.a", 
          "name": [
            "Department of Microbiology, University College Cork, Cork, Ireland", 
            "Alimentary Pharmabiotic Centre, Cork, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fitzgerald", 
        "givenName": "Gerald F.", 
        "id": "sg:person.015555070602.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555070602.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alimentary Pharmabiotic Centre, Cork, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.7872.a", 
          "name": [
            "Teagasc, Moorepark Food Research Centre, Fermoy, Co Cork, Ireland", 
            "Alimentary Pharmabiotic Centre, Cork, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ross", 
        "givenName": "R. Paul", 
        "id": "sg:person.014605670062.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605670062.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-06-24", 
    "datePublishedReg": "2011-06-24", 
    "description": "The human intestinal microbiota is considered an \u201corgan\u201d of the gastrointestinal tract (GIT) that plays a role in the host\u2019s digestive process, epithelial cell development, and regulation of innate immunity, thereby contributing to host health. One way of modulating the gut microbiota is by the consumption of probiotics, in particular, products containing Lactobacillus and Bifidobacterium spp. In this context, these micro-organisms have been extensively studied with respect to health promotion in humans and animals. In recent years, functional foods containing probiotics have become popular within the food industry due to the heightened awareness of consumers toward these health-promoting foods. Probiotic bacteria must survive during food processing and production, and retain viability after reaching the GIT, to deliver their therapeutic effect to the host. In this chapter, we discuss the classical approaches used for strain improvement, such as strain selection, nutritional programming, processing conditions, and the selection of matrices for the delivery of probiotic bacteria to the GIT. We also detail potential future strategies for improvement of probiotic survival, in particular, the application of whole-genome sequencing and metagenomics to generate molecular maps and gene catalogs of health-promoting bacteria. These will be useful for the identification of potential genes in bacterial genomes that play important roles in stress responses. Combinations of classical and molecular approaches have the potential to enhance the survival of probiotics and to help win their battle against stress.", 
    "editor": [
      {
        "familyName": "Tsakalidou", 
        "givenName": "Effie", 
        "type": "Person"
      }, 
      {
        "familyName": "Papadimitriou", 
        "givenName": "Konstantinos", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-92771-8_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-92770-1", 
        "978-0-387-92771-8"
      ], 
      "name": "Stress Responses of Lactic Acid Bacteria", 
      "type": "Book"
    }, 
    "keywords": [
      "whole-genome sequencing", 
      "host digestive processes", 
      "epithelial cell development", 
      "digestive processes", 
      "gene catalog", 
      "stress tolerance", 
      "bacterial genomes", 
      "health-promoting bacteria", 
      "molecular map", 
      "gastrointestinal tract", 
      "potential genes", 
      "strain improvement", 
      "molecular approaches", 
      "human intestinal microbiota", 
      "stress response", 
      "cell development", 
      "host health", 
      "probiotic bacteria", 
      "innate immunity", 
      "bacteria", 
      "nutritional programming", 
      "consumption of probiotics", 
      "strain selection", 
      "gut microbiota", 
      "potential future strategies", 
      "therapeutic effect", 
      "intestinal microbiota", 
      "microbiota", 
      "health promotion", 
      "Bifidobacterium spp", 
      "health-promoting foods", 
      "genome", 
      "metagenomics", 
      "important role", 
      "genes", 
      "sequencing", 
      "probiotics", 
      "spp", 
      "regulation", 
      "future strategies", 
      "host", 
      "survival", 
      "role", 
      "selection", 
      "functional foods", 
      "survival of probiotics", 
      "probiotic cultures", 
      "food processing", 
      "food industry", 
      "tolerance", 
      "viability", 
      "Lactobacillus", 
      "identification", 
      "food", 
      "immunity", 
      "tract", 
      "organs", 
      "humans", 
      "production", 
      "animals", 
      "stress", 
      "culture", 
      "health", 
      "improvement", 
      "future directions", 
      "delivery", 
      "years", 
      "response", 
      "recent years", 
      "development", 
      "promotion", 
      "potential", 
      "awareness", 
      "products", 
      "maps", 
      "effect", 
      "catalogue", 
      "awareness of consumers", 
      "process", 
      "recent trends", 
      "combination", 
      "strategies", 
      "conditions", 
      "chapter", 
      "probiotic survival", 
      "matrix", 
      "consumption", 
      "approach", 
      "trends", 
      "classical approach", 
      "processing", 
      "context", 
      "respect", 
      "selection of matrix", 
      "way", 
      "applications", 
      "consumers", 
      "industry", 
      "direction", 
      "battle", 
      "programming", 
      "processing conditions"
    ], 
    "name": "Improving the Stress Tolerance of Probiotic Cultures: Recent Trends and Future Directions", 
    "pagination": "395-438", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051054574"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-92771-8_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-92771-8_17", 
      "https://app.dimensions.ai/details/publication/pub.1051054574"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_351.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-0-387-92771-8_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92771-8_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92771-8_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92771-8_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92771-8_17'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      23 PREDICATES      129 URIs      119 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-92771-8_17 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 anzsrc-for:0605
4 anzsrc-for:09
5 anzsrc-for:0908
6 schema:author N0c1c07ae16e049ab9df4cdf080be1e8b
7 schema:datePublished 2011-06-24
8 schema:datePublishedReg 2011-06-24
9 schema:description The human intestinal microbiota is considered an “organ” of the gastrointestinal tract (GIT) that plays a role in the host’s digestive process, epithelial cell development, and regulation of innate immunity, thereby contributing to host health. One way of modulating the gut microbiota is by the consumption of probiotics, in particular, products containing Lactobacillus and Bifidobacterium spp. In this context, these micro-organisms have been extensively studied with respect to health promotion in humans and animals. In recent years, functional foods containing probiotics have become popular within the food industry due to the heightened awareness of consumers toward these health-promoting foods. Probiotic bacteria must survive during food processing and production, and retain viability after reaching the GIT, to deliver their therapeutic effect to the host. In this chapter, we discuss the classical approaches used for strain improvement, such as strain selection, nutritional programming, processing conditions, and the selection of matrices for the delivery of probiotic bacteria to the GIT. We also detail potential future strategies for improvement of probiotic survival, in particular, the application of whole-genome sequencing and metagenomics to generate molecular maps and gene catalogs of health-promoting bacteria. These will be useful for the identification of potential genes in bacterial genomes that play important roles in stress responses. Combinations of classical and molecular approaches have the potential to enhance the survival of probiotics and to help win their battle against stress.
10 schema:editor N20ad0dedf8c64b92bbc849521274abdf
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Na62fe508830f4b3fb0f460bc7589260a
15 schema:keywords Bifidobacterium spp
16 Lactobacillus
17 animals
18 applications
19 approach
20 awareness
21 awareness of consumers
22 bacteria
23 bacterial genomes
24 battle
25 catalogue
26 cell development
27 chapter
28 classical approach
29 combination
30 conditions
31 consumers
32 consumption
33 consumption of probiotics
34 context
35 culture
36 delivery
37 development
38 digestive processes
39 direction
40 effect
41 epithelial cell development
42 food
43 food industry
44 food processing
45 functional foods
46 future directions
47 future strategies
48 gastrointestinal tract
49 gene catalog
50 genes
51 genome
52 gut microbiota
53 health
54 health promotion
55 health-promoting bacteria
56 health-promoting foods
57 host
58 host digestive processes
59 host health
60 human intestinal microbiota
61 humans
62 identification
63 immunity
64 important role
65 improvement
66 industry
67 innate immunity
68 intestinal microbiota
69 maps
70 matrix
71 metagenomics
72 microbiota
73 molecular approaches
74 molecular map
75 nutritional programming
76 organs
77 potential
78 potential future strategies
79 potential genes
80 probiotic bacteria
81 probiotic cultures
82 probiotic survival
83 probiotics
84 process
85 processing
86 processing conditions
87 production
88 products
89 programming
90 promotion
91 recent trends
92 recent years
93 regulation
94 respect
95 response
96 role
97 selection
98 selection of matrix
99 sequencing
100 spp
101 strain improvement
102 strain selection
103 strategies
104 stress
105 stress response
106 stress tolerance
107 survival
108 survival of probiotics
109 therapeutic effect
110 tolerance
111 tract
112 trends
113 viability
114 way
115 whole-genome sequencing
116 years
117 schema:name Improving the Stress Tolerance of Probiotic Cultures: Recent Trends and Future Directions
118 schema:pagination 395-438
119 schema:productId N539ebecb905f4720aaa4a4c5fa3c4df4
120 Na6d9f50d78874b3296e55c334d790a96
121 schema:publisher N0ca54f0dd8ac4da296b4a30e9101ca4f
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051054574
123 https://doi.org/10.1007/978-0-387-92771-8_17
124 schema:sdDatePublished 2021-12-01T20:06
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N0662b3836f434570a845b5c8e533eb7c
127 schema:url https://doi.org/10.1007/978-0-387-92771-8_17
128 sgo:license sg:explorer/license/
129 sgo:sdDataset chapters
130 rdf:type schema:Chapter
131 N0662b3836f434570a845b5c8e533eb7c schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N0c1c07ae16e049ab9df4cdf080be1e8b rdf:first sg:person.0641300675.35
134 rdf:rest N3f0c806962a74312bbd0179d6e728aba
135 N0ca54f0dd8ac4da296b4a30e9101ca4f schema:name Springer Nature
136 rdf:type schema:Organisation
137 N20ad0dedf8c64b92bbc849521274abdf rdf:first N3f52d30b49234f1f80ea62647c7906c5
138 rdf:rest N83a3491a75744fa7a51e94b8fdd06266
139 N2f84106dc41e4fedbc0409793edd28c7 schema:familyName Papadimitriou
140 schema:givenName Konstantinos
141 rdf:type schema:Person
142 N3f0c806962a74312bbd0179d6e728aba rdf:first sg:person.0631363014.01
143 rdf:rest N90df2e054d784461a3cfc8116b9c2c07
144 N3f52d30b49234f1f80ea62647c7906c5 schema:familyName Tsakalidou
145 schema:givenName Effie
146 rdf:type schema:Person
147 N539ebecb905f4720aaa4a4c5fa3c4df4 schema:name dimensions_id
148 schema:value pub.1051054574
149 rdf:type schema:PropertyValue
150 N83a3491a75744fa7a51e94b8fdd06266 rdf:first N2f84106dc41e4fedbc0409793edd28c7
151 rdf:rest rdf:nil
152 N90df2e054d784461a3cfc8116b9c2c07 rdf:first sg:person.01202224511.99
153 rdf:rest Nc4bca3a009944d02a7778e82ff62a5c7
154 Na62fe508830f4b3fb0f460bc7589260a schema:isbn 978-0-387-92770-1
155 978-0-387-92771-8
156 schema:name Stress Responses of Lactic Acid Bacteria
157 rdf:type schema:Book
158 Na6d9f50d78874b3296e55c334d790a96 schema:name doi
159 schema:value 10.1007/978-0-387-92771-8_17
160 rdf:type schema:PropertyValue
161 Nc4bca3a009944d02a7778e82ff62a5c7 rdf:first sg:person.015555070602.34
162 rdf:rest Nfbf5b428b07f415389cade34bb8fc068
163 Nfbf5b428b07f415389cade34bb8fc068 rdf:first sg:person.014605670062.43
164 rdf:rest rdf:nil
165 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
166 schema:name Biological Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
169 schema:name Genetics
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
172 schema:name Microbiology
173 rdf:type schema:DefinedTerm
174 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
175 schema:name Engineering
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0908 schema:inDefinedTermSet anzsrc-for:
178 schema:name Food Sciences
179 rdf:type schema:DefinedTerm
180 sg:person.01202224511.99 schema:affiliation grid-institutes:grid.7872.a
181 schema:familyName Hill
182 schema:givenName Colin
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202224511.99
184 rdf:type schema:Person
185 sg:person.014605670062.43 schema:affiliation grid-institutes:grid.7872.a
186 schema:familyName Ross
187 schema:givenName R. Paul
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605670062.43
189 rdf:type schema:Person
190 sg:person.015555070602.34 schema:affiliation grid-institutes:grid.7872.a
191 schema:familyName Fitzgerald
192 schema:givenName Gerald F.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555070602.34
194 rdf:type schema:Person
195 sg:person.0631363014.01 schema:affiliation grid-institutes:grid.7872.a
196 schema:familyName Stanton
197 schema:givenName Catherine
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631363014.01
199 rdf:type schema:Person
200 sg:person.0641300675.35 schema:affiliation grid-institutes:grid.7872.a
201 schema:familyName Upadrasta
202 schema:givenName Aditya
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641300675.35
204 rdf:type schema:Person
205 grid-institutes:grid.7872.a schema:alternateName Alimentary Pharmabiotic Centre, Cork, Ireland
206 Department of Microbiology, University College Cork, Cork, Ireland
207 schema:name Alimentary Pharmabiotic Centre, Cork, Ireland
208 Department of Microbiology, University College Cork, Cork, Ireland
209 Teagasc, Moorepark Food Research Centre, Fermoy, Co Cork, Ireland
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...