The Key Role of Nanoparticles in Reactivity of 3D Metal Oxides Toward Lithium View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

J-M. Tarascon , S. Grugeon , S. Laruelle , D. Larcher , P. Poizot

ABSTRACT

In response to the needs of today's mobile society and the emergence of ecological concerns such as global warming, one of the major technological challenges in this new century is undoubtedly energy generation and storage. Ninety percent of today's electrical power generation still comes from fossil fuels, and we are constantly struggling to reduce the carbon dioxide emissions per unit of electric power so as to help curtail global warming. It is now mandatory that new and environmentally friendly energy/storage sources be found. Hence, the fast developing research in that field involving, among others, fuel cells, primary and rechargeable batteries, and supercapacitors. As a result of this worldwide ecological priority, political concerns have come into play, and science has suffered from prioritisation based on both industrial pressure and media reports, rather than on the clear and rigorous scientific identification of technological stoppers inherent in each storage system. Needless to say, this applies to battery systems as well. In the past two decades, intensive efforts have given birth to the rechargeable Li-ion battery technology that has dominated the market place, and can be regarded as one of the great successes in modern electrochemistry to date. But these Li-based systems still suffer from the lack of suitable electrode and electrolyte materials, which they require if they are ever to accommodate the increasing user's demands. Aware of this limitation, chemists have been acting at several levels to incrementally improve the Li-ion performance. They have followed a dual approach, dealing with either positive or negative electrode materials, with efforts centered around: 1) the modification of existing materials through cationic/anionic substitution, texture modification and surface treatments, 2) the making of composite electrodes or electrolytes made of several chemical components, and 3) the design of new electrode materials. Such approaches were pursued at the macroscopic scale on electrode materials1–3 having a dual electronic-ionic conductivity, a void structure to insert/de-insert Li ions, or the ability to alloy with Li. They led to the identification of layered LiMn1−xCrx02 oxides4–5 or three-dimensional iron phosphates (LiFeP04)6, that stand as a possible alternative to LiCo02 or negative electrode materials such as tin-based oxides (Sn02, SnO),7–8 intermetallics (CuSb9, Cu6Sn510, ...), nitrides11 and phosphides,12'13 which could be used as alternatives to carbonaceous materials, once their initial large irreversibility and poor cycle life have been overcome. More... »

PAGES

220-246

Book

TITLE

Lithium Batteries

ISBN

978-0-387-92674-2
978-0-387-92675-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-92675-9_7

DOI

http://dx.doi.org/10.1007/978-0-387-92675-9_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017056613


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
          "id": "https://www.grid.ac/institutes/grid.463728.c", 
          "name": [
            "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne and CNRS (UMR-6007), 33 rue Saint Leu, 80039, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarascon", 
        "givenName": "J-M.", 
        "id": "sg:person.01364322774.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
          "id": "https://www.grid.ac/institutes/grid.463728.c", 
          "name": [
            "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne and CNRS (UMR-6007), 33 rue Saint Leu, 80039, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grugeon", 
        "givenName": "S.", 
        "id": "sg:person.016301653457.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301653457.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
          "id": "https://www.grid.ac/institutes/grid.463728.c", 
          "name": [
            "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne and CNRS (UMR-6007), 33 rue Saint Leu, 80039, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laruelle", 
        "givenName": "S.", 
        "id": "sg:person.01330435361.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330435361.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
          "id": "https://www.grid.ac/institutes/grid.463728.c", 
          "name": [
            "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne and CNRS (UMR-6007), 33 rue Saint Leu, 80039, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larcher", 
        "givenName": "D.", 
        "id": "sg:person.07731574421.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731574421.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides", 
          "id": "https://www.grid.ac/institutes/grid.463728.c", 
          "name": [
            "Laboratoire de R\u00e9activit\u00e9 et Chimie des Solides, Universit\u00e9 de Picardie Jules Verne and CNRS (UMR-6007), 33 rue Saint Leu, 80039, Amiens, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poizot", 
        "givenName": "P.", 
        "id": "sg:person.015752111777.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752111777.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/381499a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001575647", 
          "https://doi.org/10.1038/381499a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4596(84)90278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001871904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(81)90126-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003883183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(81)90126-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003883183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1387-1609(00)01148-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003969225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(99)00096-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004449932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2481(02)00363-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008028629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1472303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009712683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1837740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011191050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02374148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013449459", 
          "https://doi.org/10.1007/bf02374148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02374148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013449459", 
          "https://doi.org/10.1007/bf02374148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(83)90138-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014620211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(83)90138-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014620211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5317.1395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016558883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(82)90029-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023813000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(82)90029-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023813000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(85)87015-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025117507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(00)00784-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027943031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a902060h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031976688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-7336(86)80085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033881692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1435358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034604692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1390819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034956478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1836594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041835154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a805662e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043880925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1425262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045025728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(85)90069-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045502871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(85)90069-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045502871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(01)00508-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046627929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1391622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050115684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1837649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051120163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051213847", 
          "https://doi.org/10.1038/35035045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051213847", 
          "https://doi.org/10.1038/35035045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1370962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052201670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.192.4244.1126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062513633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.205.4407.651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062519902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1353566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063186346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1393421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063186864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1409971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1446079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1467947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1497981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187416"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "In response to the needs of today's mobile society and the emergence of ecological concerns such as global warming, one of the major technological challenges in this new century is undoubtedly energy generation and storage. Ninety percent of today's electrical power generation still comes from fossil fuels, and we are constantly struggling to reduce the carbon dioxide emissions per unit of electric power so as to help curtail global warming. It is now mandatory that new and environmentally friendly energy/storage sources be found. Hence, the fast developing research in that field involving, among others, fuel cells, primary and rechargeable batteries, and supercapacitors. As a result of this worldwide ecological priority, political concerns have come into play, and science has suffered from prioritisation based on both industrial pressure and media reports, rather than on the clear and rigorous scientific identification of technological stoppers inherent in each storage system. Needless to say, this applies to battery systems as well. In the past two decades, intensive efforts have given birth to the rechargeable Li-ion battery technology that has dominated the market place, and can be regarded as one of the great successes in modern electrochemistry to date. But these Li-based systems still suffer from the lack of suitable electrode and electrolyte materials, which they require if they are ever to accommodate the increasing user's demands. Aware of this limitation, chemists have been acting at several levels to incrementally improve the Li-ion performance. They have followed a dual approach, dealing with either positive or negative electrode materials, with efforts centered around: 1) the modification of existing materials through cationic/anionic substitution, texture modification and surface treatments, 2) the making of composite electrodes or electrolytes made of several chemical components, and 3) the design of new electrode materials. Such approaches were pursued at the macroscopic scale on electrode materials1\u20133 having a dual electronic-ionic conductivity, a void structure to insert/de-insert Li ions, or the ability to alloy with Li. They led to the identification of layered LiMn1\u2212xCrx02 oxides4\u20135 or three-dimensional iron phosphates (LiFeP04)6, that stand as a possible alternative to LiCo02 or negative electrode materials such as tin-based oxides (Sn02, SnO),7\u20138 intermetallics (CuSb9, Cu6Sn510, ...), nitrides11 and phosphides,12'13 which could be used as alternatives to carbonaceous materials, once their initial large irreversibility and poor cycle life have been overcome.", 
    "editor": [
      {
        "familyName": "Nazri", 
        "givenName": "Gholam-Abbas", 
        "type": "Person"
      }, 
      {
        "familyName": "Pistoia", 
        "givenName": "Gianfranco", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-92675-9_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-92674-2", 
        "978-0-387-92675-9"
      ], 
      "name": "Lithium Batteries", 
      "type": "Book"
    }, 
    "name": "The Key Role of Nanoparticles in Reactivity of 3D Metal Oxides Toward Lithium", 
    "pagination": "220-246", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-92675-9_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5143c1bd523f07c1272ace99f7c728ff3d88362c81d882c349415e6fd85b2053"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017056613"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-92675-9_7", 
      "https://app.dimensions.ai/details/publication/pub.1017056613"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43225_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-0-387-92675-9_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92675-9_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92675-9_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92675-9_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-92675-9_7'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      23 PREDICATES      62 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-92675-9_7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N9ab33d0133d746bf8b108fb33311d140
4 schema:citation sg:pub.10.1007/bf02374148
5 sg:pub.10.1038/35035045
6 sg:pub.10.1038/381499a0
7 https://doi.org/10.1016/0013-4686(85)87015-8
8 https://doi.org/10.1016/0022-4596(84)90278-0
9 https://doi.org/10.1016/0025-5408(81)90126-4
10 https://doi.org/10.1016/0025-5408(82)90029-0
11 https://doi.org/10.1016/0025-5408(83)90138-1
12 https://doi.org/10.1016/0167-2738(85)90069-4
13 https://doi.org/10.1016/0168-7336(86)80085-7
14 https://doi.org/10.1016/s0167-2738(00)00784-0
15 https://doi.org/10.1016/s0167-2738(99)00096-x
16 https://doi.org/10.1016/s0378-7753(01)00508-0
17 https://doi.org/10.1016/s1387-1609(00)01148-8
18 https://doi.org/10.1016/s1388-2481(02)00363-6
19 https://doi.org/10.1039/a805662e
20 https://doi.org/10.1039/a902060h
21 https://doi.org/10.1126/science.192.4244.1126
22 https://doi.org/10.1126/science.205.4407.651
23 https://doi.org/10.1126/science.276.5317.1395
24 https://doi.org/10.1149/1.1353566
25 https://doi.org/10.1149/1.1370962
26 https://doi.org/10.1149/1.1390819
27 https://doi.org/10.1149/1.1391622
28 https://doi.org/10.1149/1.1393421
29 https://doi.org/10.1149/1.1409971
30 https://doi.org/10.1149/1.1425262
31 https://doi.org/10.1149/1.1435358
32 https://doi.org/10.1149/1.1446079
33 https://doi.org/10.1149/1.1467947
34 https://doi.org/10.1149/1.1472303
35 https://doi.org/10.1149/1.1497981
36 https://doi.org/10.1149/1.1836594
37 https://doi.org/10.1149/1.1837649
38 https://doi.org/10.1149/1.1837740
39 schema:datePublished 2003
40 schema:datePublishedReg 2003-01-01
41 schema:description In response to the needs of today's mobile society and the emergence of ecological concerns such as global warming, one of the major technological challenges in this new century is undoubtedly energy generation and storage. Ninety percent of today's electrical power generation still comes from fossil fuels, and we are constantly struggling to reduce the carbon dioxide emissions per unit of electric power so as to help curtail global warming. It is now mandatory that new and environmentally friendly energy/storage sources be found. Hence, the fast developing research in that field involving, among others, fuel cells, primary and rechargeable batteries, and supercapacitors. As a result of this worldwide ecological priority, political concerns have come into play, and science has suffered from prioritisation based on both industrial pressure and media reports, rather than on the clear and rigorous scientific identification of technological stoppers inherent in each storage system. Needless to say, this applies to battery systems as well. In the past two decades, intensive efforts have given birth to the rechargeable Li-ion battery technology that has dominated the market place, and can be regarded as one of the great successes in modern electrochemistry to date. But these Li-based systems still suffer from the lack of suitable electrode and electrolyte materials, which they require if they are ever to accommodate the increasing user's demands. Aware of this limitation, chemists have been acting at several levels to incrementally improve the Li-ion performance. They have followed a dual approach, dealing with either positive or negative electrode materials, with efforts centered around: 1) the modification of existing materials through cationic/anionic substitution, texture modification and surface treatments, 2) the making of composite electrodes or electrolytes made of several chemical components, and 3) the design of new electrode materials. Such approaches were pursued at the macroscopic scale on electrode materials1–3 having a dual electronic-ionic conductivity, a void structure to insert/de-insert Li ions, or the ability to alloy with Li. They led to the identification of layered LiMn1−xCrx02 oxides4–5 or three-dimensional iron phosphates (LiFeP04)6, that stand as a possible alternative to LiCo02 or negative electrode materials such as tin-based oxides (Sn02, SnO),7–8 intermetallics (CuSb9, Cu6Sn510, ...), nitrides11 and phosphides,12'13 which could be used as alternatives to carbonaceous materials, once their initial large irreversibility and poor cycle life have been overcome.
42 schema:editor N61d190ba72fa4113aedbe83b7333b823
43 schema:genre chapter
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N01ad869473e74ddc9df22a6528a8cef9
47 schema:name The Key Role of Nanoparticles in Reactivity of 3D Metal Oxides Toward Lithium
48 schema:pagination 220-246
49 schema:productId N42284f68410948d59fb39e8c99aad16b
50 N8300b4dc72d944f3a9a350df212ddcf0
51 Nfccf44ac51bf4a17b49258ece20a744f
52 schema:publisher Nb34bb91c258443489598564fd664e18f
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017056613
54 https://doi.org/10.1007/978-0-387-92675-9_7
55 schema:sdDatePublished 2019-04-16T06:12
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N3e5b134157b74406adf34b9a6f55d500
58 schema:url https://link.springer.com/10.1007%2F978-0-387-92675-9_7
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N01ad869473e74ddc9df22a6528a8cef9 schema:isbn 978-0-387-92674-2
63 978-0-387-92675-9
64 schema:name Lithium Batteries
65 rdf:type schema:Book
66 N28b6b594278f46f581dbf85b40b4ae1e rdf:first sg:person.015752111777.54
67 rdf:rest rdf:nil
68 N3e5b134157b74406adf34b9a6f55d500 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N3ecaadaa8a0d42008c8941c81bef3fde rdf:first sg:person.07731574421.99
71 rdf:rest N28b6b594278f46f581dbf85b40b4ae1e
72 N42284f68410948d59fb39e8c99aad16b schema:name doi
73 schema:value 10.1007/978-0-387-92675-9_7
74 rdf:type schema:PropertyValue
75 N44cf8d7cd9784167b2072b35d5f60065 schema:familyName Nazri
76 schema:givenName Gholam-Abbas
77 rdf:type schema:Person
78 N61d190ba72fa4113aedbe83b7333b823 rdf:first N44cf8d7cd9784167b2072b35d5f60065
79 rdf:rest Neae7241ca3eb404a9baea6283655cbd9
80 N7575480b82f04ec992f51d5fe22533fa rdf:first sg:person.01330435361.36
81 rdf:rest N3ecaadaa8a0d42008c8941c81bef3fde
82 N8300b4dc72d944f3a9a350df212ddcf0 schema:name dimensions_id
83 schema:value pub.1017056613
84 rdf:type schema:PropertyValue
85 N879ff4e29d4d46fcb95959b4086d38b3 schema:familyName Pistoia
86 schema:givenName Gianfranco
87 rdf:type schema:Person
88 N88cd3af4183741cb84a76b105cc1804c rdf:first sg:person.016301653457.42
89 rdf:rest N7575480b82f04ec992f51d5fe22533fa
90 N9ab33d0133d746bf8b108fb33311d140 rdf:first sg:person.01364322774.51
91 rdf:rest N88cd3af4183741cb84a76b105cc1804c
92 Nb34bb91c258443489598564fd664e18f schema:location Boston, MA
93 schema:name Springer US
94 rdf:type schema:Organisation
95 Neae7241ca3eb404a9baea6283655cbd9 rdf:first N879ff4e29d4d46fcb95959b4086d38b3
96 rdf:rest rdf:nil
97 Nfccf44ac51bf4a17b49258ece20a744f schema:name readcube_id
98 schema:value 5143c1bd523f07c1272ace99f7c728ff3d88362c81d882c349415e6fd85b2053
99 rdf:type schema:PropertyValue
100 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
101 schema:name Chemical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Chemistry (incl. Structural)
105 rdf:type schema:DefinedTerm
106 sg:person.01330435361.36 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
107 schema:familyName Laruelle
108 schema:givenName S.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330435361.36
110 rdf:type schema:Person
111 sg:person.01364322774.51 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
112 schema:familyName Tarascon
113 schema:givenName J-M.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51
115 rdf:type schema:Person
116 sg:person.015752111777.54 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
117 schema:familyName Poizot
118 schema:givenName P.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752111777.54
120 rdf:type schema:Person
121 sg:person.016301653457.42 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
122 schema:familyName Grugeon
123 schema:givenName S.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301653457.42
125 rdf:type schema:Person
126 sg:person.07731574421.99 schema:affiliation https://www.grid.ac/institutes/grid.463728.c
127 schema:familyName Larcher
128 schema:givenName D.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731574421.99
130 rdf:type schema:Person
131 sg:pub.10.1007/bf02374148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013449459
132 https://doi.org/10.1007/bf02374148
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/35035045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051213847
135 https://doi.org/10.1038/35035045
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/381499a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001575647
138 https://doi.org/10.1038/381499a0
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0013-4686(85)87015-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025117507
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0022-4596(84)90278-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001871904
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0025-5408(81)90126-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003883183
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0025-5408(82)90029-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023813000
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0025-5408(83)90138-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014620211
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0167-2738(85)90069-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045502871
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0168-7336(86)80085-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033881692
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0167-2738(00)00784-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027943031
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0167-2738(99)00096-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004449932
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0378-7753(01)00508-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046627929
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s1387-1609(00)01148-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003969225
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s1388-2481(02)00363-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008028629
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1039/a805662e schema:sameAs https://app.dimensions.ai/details/publication/pub.1043880925
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1039/a902060h schema:sameAs https://app.dimensions.ai/details/publication/pub.1031976688
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.192.4244.1126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062513633
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.205.4407.651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062519902
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.276.5317.1395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016558883
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1149/1.1353566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063186346
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1149/1.1370962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052201670
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1149/1.1390819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034956478
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1149/1.1391622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050115684
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1149/1.1393421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063186864
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1149/1.1409971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187027
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1149/1.1425262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045025728
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1149/1.1435358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034604692
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1149/1.1446079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187151
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1149/1.1467947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187293
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1149/1.1472303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009712683
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1149/1.1497981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187416
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1149/1.1836594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041835154
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1149/1.1837649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051120163
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1149/1.1837740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011191050
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.463728.c schema:alternateName Laboratoire de Réactivité et Chimie des Solides
205 schema:name Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne and CNRS (UMR-6007), 33 rue Saint Leu, 80039, Amiens, France
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...