Three-Dimensional Ultrasound Imaging in Air for Parking and Pedestrian Protection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-10-06

AUTHORS

Marco Moebus , Abdelhak Zoubir

ABSTRACT

Acoustic imaging has been used in a variety of applications, but its use in air has been limited due to the slow propagation of sound and high attenuation. We address the problem of obstacle detection in a scene using ultrasound imaging with a 2D array under the constraint of a fixed platform. Applications are in the area of autonomous navigation such as a parking car as well as pedestrian detection for pre-crash measures of crash avoidance. The presented system uses a single transmit pulse combined with a beamformer at the receiving array based on a near-field model to obtain 3D images of a scene. Results from experiments conducted in a laboratory demonstrate that it is possible to detect position and edge information from which an object can be reconstructed. Additionally, echo characteristics change with respect to surface texture. Thus, ultrasound arrays can be employed in cars to augment short-range applications. More... »

PAGES

137-147

Book

TITLE

In-Vehicle Corpus and Signal Processing for Driver Behavior

ISBN

978-0-387-79581-2
978-0-387-79582-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-79582-9_11

DOI

http://dx.doi.org/10.1007/978-0-387-79582-9_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019229538


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institute of Telecommunications, Technische Universit\u00e4t Darmstadt, Merckstra\u00dfe 25, Darmstadt, 64283, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moebus", 
        "givenName": "Marco", 
        "id": "sg:person.015134340405.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134340405.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institute of Telecommunications, Technische Universit\u00e4t Darmstadt, Merckstra\u00dfe 25, Darmstadt, 64283, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoubir", 
        "givenName": "Abdelhak", 
        "id": "sg:person.013316510015.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/5.899059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/51.544509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061184724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/58.489395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061191002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/58.818752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061191706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/79.526899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sam.2008.4606865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093179238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2002.5745281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093866641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2007.366397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094107895"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10-06", 
    "datePublishedReg": "2008-10-06", 
    "description": "Acoustic imaging has been used in a variety of applications, but its use in air has been limited due to the slow propagation of sound and high attenuation. We address the problem of obstacle detection in a scene using ultrasound imaging with a 2D array under the constraint of a fixed platform. Applications are in the area of autonomous navigation such as a parking car as well as pedestrian detection for pre-crash measures of crash avoidance. The presented system uses a single transmit pulse combined with a beamformer at the receiving array based on a near-field model to obtain 3D images of a scene. Results from experiments conducted in a laboratory demonstrate that it is possible to detect position and edge information from which an object can be reconstructed. Additionally, echo characteristics change with respect to surface texture. Thus, ultrasound arrays can be employed in cars to augment short-range applications.", 
    "editor": [
      {
        "familyName": "Takeda", 
        "givenName": "Kazuya", 
        "type": "Person"
      }, 
      {
        "familyName": "Erdogan", 
        "givenName": "Hakan", 
        "type": "Person"
      }, 
      {
        "familyName": "Hansen", 
        "givenName": "John H. L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Abut", 
        "givenName": "Huseyin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-79582-9_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-79581-2", 
        "978-0-387-79582-9"
      ], 
      "name": "In-Vehicle Corpus and Signal Processing for Driver Behavior", 
      "type": "Book"
    }, 
    "name": "Three-Dimensional Ultrasound Imaging in Air for Parking and Pedestrian Protection", 
    "pagination": "137-147", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019229538"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-79582-9_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b9f5886bf3b97ff241257981c6d85643740332a3fdc7419e2ca1bcd29e17272"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-79582-9_11", 
      "https://app.dimensions.ai/details/publication/pub.1019229538"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57902_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-0-387-79582-9_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-79582-9_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-79582-9_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-79582-9_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-79582-9_11'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      35 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-79582-9_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2a475f535639422a96ec06d339debfee
4 schema:citation https://doi.org/10.1109/5.899059
5 https://doi.org/10.1109/51.544509
6 https://doi.org/10.1109/58.489395
7 https://doi.org/10.1109/58.818752
8 https://doi.org/10.1109/79.526899
9 https://doi.org/10.1109/icassp.2002.5745281
10 https://doi.org/10.1109/icassp.2007.366397
11 https://doi.org/10.1109/sam.2008.4606865
12 https://doi.org/10.1109/tip.2003.819861
13 schema:datePublished 2008-10-06
14 schema:datePublishedReg 2008-10-06
15 schema:description Acoustic imaging has been used in a variety of applications, but its use in air has been limited due to the slow propagation of sound and high attenuation. We address the problem of obstacle detection in a scene using ultrasound imaging with a 2D array under the constraint of a fixed platform. Applications are in the area of autonomous navigation such as a parking car as well as pedestrian detection for pre-crash measures of crash avoidance. The presented system uses a single transmit pulse combined with a beamformer at the receiving array based on a near-field model to obtain 3D images of a scene. Results from experiments conducted in a laboratory demonstrate that it is possible to detect position and edge information from which an object can be reconstructed. Additionally, echo characteristics change with respect to surface texture. Thus, ultrasound arrays can be employed in cars to augment short-range applications.
16 schema:editor Nc014b66a5e4040808ea709ff8635dd9c
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N08c1c67eb64e412fab35b8c9046c1e02
21 schema:name Three-Dimensional Ultrasound Imaging in Air for Parking and Pedestrian Protection
22 schema:pagination 137-147
23 schema:productId N2777a3c834214288a6215cfb30ee5a58
24 Na2c8f7657775409e9bf083c28fd5556a
25 Nbbca09e2d7c149618da9e6322c6e1d2a
26 schema:publisher N9524f9203490477499e2cc56cbef1ba7
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019229538
28 https://doi.org/10.1007/978-0-387-79582-9_11
29 schema:sdDatePublished 2019-04-16T07:32
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N1642cb544b6244fcba9efc20326a1c68
32 schema:url https://link.springer.com/10.1007%2F978-0-387-79582-9_11
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N08142dfcfeea4e989ab9288b1c5ce25d schema:familyName Abut
37 schema:givenName Huseyin
38 rdf:type schema:Person
39 N08c1c67eb64e412fab35b8c9046c1e02 schema:isbn 978-0-387-79581-2
40 978-0-387-79582-9
41 schema:name In-Vehicle Corpus and Signal Processing for Driver Behavior
42 rdf:type schema:Book
43 N12d05ca4a023494e8ab3d561f0d99c0d rdf:first Nca08f79b6a1e4860877b254836cec8a6
44 rdf:rest N6a92148998c94498a059578c48888df0
45 N1642cb544b6244fcba9efc20326a1c68 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N2777a3c834214288a6215cfb30ee5a58 schema:name dimensions_id
48 schema:value pub.1019229538
49 rdf:type schema:PropertyValue
50 N2a475f535639422a96ec06d339debfee rdf:first sg:person.015134340405.71
51 rdf:rest Nbbcf65ef8edd4dd3ab446bc8d3ab482a
52 N2f5e50ad6c574633a5b43fba78db5944 schema:familyName Erdogan
53 schema:givenName Hakan
54 rdf:type schema:Person
55 N404f9e48835f446287af20208d45cd62 schema:familyName Takeda
56 schema:givenName Kazuya
57 rdf:type schema:Person
58 N6502ef5f74a04286af312a124d03bac4 rdf:first N2f5e50ad6c574633a5b43fba78db5944
59 rdf:rest N12d05ca4a023494e8ab3d561f0d99c0d
60 N6a92148998c94498a059578c48888df0 rdf:first N08142dfcfeea4e989ab9288b1c5ce25d
61 rdf:rest rdf:nil
62 N9524f9203490477499e2cc56cbef1ba7 schema:location Boston, MA
63 schema:name Springer US
64 rdf:type schema:Organisation
65 Na2c8f7657775409e9bf083c28fd5556a schema:name doi
66 schema:value 10.1007/978-0-387-79582-9_11
67 rdf:type schema:PropertyValue
68 Nbbca09e2d7c149618da9e6322c6e1d2a schema:name readcube_id
69 schema:value 5b9f5886bf3b97ff241257981c6d85643740332a3fdc7419e2ca1bcd29e17272
70 rdf:type schema:PropertyValue
71 Nbbcf65ef8edd4dd3ab446bc8d3ab482a rdf:first sg:person.013316510015.38
72 rdf:rest rdf:nil
73 Nc014b66a5e4040808ea709ff8635dd9c rdf:first N404f9e48835f446287af20208d45cd62
74 rdf:rest N6502ef5f74a04286af312a124d03bac4
75 Nca08f79b6a1e4860877b254836cec8a6 schema:familyName Hansen
76 schema:givenName John H. L.
77 rdf:type schema:Person
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:person.013316510015.38 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
85 schema:familyName Zoubir
86 schema:givenName Abdelhak
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38
88 rdf:type schema:Person
89 sg:person.015134340405.71 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
90 schema:familyName Moebus
91 schema:givenName Marco
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134340405.71
93 rdf:type schema:Person
94 https://doi.org/10.1109/5.899059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180250
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/51.544509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061184724
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/58.489395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061191002
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/58.818752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061191706
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/79.526899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231961
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/icassp.2002.5745281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093866641
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/icassp.2007.366397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094107895
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/sam.2008.4606865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093179238
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
113 schema:name Institute of Telecommunications, Technische Universität Darmstadt, Merckstraße 25, Darmstadt, 64283, Germany
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...